IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v159y2021ics0167947321000360.html
   My bibliography  Save this article

Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method

Author

Listed:
  • Kirkby, J. Lars
  • Leitao, Álvaro
  • Nguyen, Duy

Abstract

A general and efficient nonparametric density estimation procedure for local bases, including B-splines, is proposed, which employs a novel statistical Galerkin method combined with basis duality theory. To select the bandwidth, an efficient cross-validation procedure is introduced, based on closed-form expressions in terms of the primal and dual B-spline basis. By utilizing a closed-form expression for the dual basis, the least-squares cross validation formula is calculated in closed-form, enabling an efficient estimation of the optimal bandwidth. The full computational procedure achieves optimal complexity, and is very accurate in comparison with existing estimation procedures, including state-of-the-art kernel density estimators. The presented theoretical results are supported by extensive numerical experiments, which demonstrate the efficiency and accuracy of the new methodology. This new approach provides a complete and optimally efficient framework for density estimation with a B-spline basis, based on simple and elegant closed-form estimators with theoretical convergence results that are substantiated in numerical experiments.

Suggested Citation

  • Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:csdana:v:159:y:2021:i:c:s0167947321000360
    DOI: 10.1016/j.csda.2021.107202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000360
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirkby, J. Lars & Mitra, Sovan & Nguyen, Duy, 2020. "An analysis of dollar cost averaging and market timing investment strategies," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1168-1186.
    2. Hall, Peter, 1987. "Cross-validation and the smoothing of orthogonal series density estimators," Journal of Multivariate Analysis, Elsevier, vol. 21(2), pages 189-206, April.
    3. Koo, Ja-Yong, 1996. "Bivariate B-splines for tensor logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 31-42, January.
    4. Aït-Sahalia, Yacine & Park, Joon Y., 2016. "Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models," Journal of Econometrics, Elsevier, vol. 192(1), pages 119-138.
    5. Justin Lars Kirkby & Shijie Deng, 2019. "Static hedging and pricing of exotic options with payoff frames," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 612-658, April.
    6. Rathke, Fabian & Schnörr, Christoph, 2019. "Fast multivariate log-concave density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 41-58.
    7. García Treviño, E.S. & Alarcón Aquino, V. & Barria, J.A., 2019. "The radial wavelet frame density estimator," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 111-139.
    8. Abhishek Bhattacharya & David B. Dunson, 2010. "Nonparametric Bayesian density estimation on manifolds with applications to planar shapes," Biometrika, Biometrika Trust, vol. 97(4), pages 851-865.
    9. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    10. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    11. Leitao, Álvaro & Oosterlee, Cornelis W. & Ortiz-Gracia, Luis & Bohte, Sander M., 2018. "On the data-driven COS method," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 68-84.
    12. McCloud, Nadine & Parmeter, Christopher F., 2020. "Determining the Number of Effective Parameters in Kernel Density Estimation," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    13. Cui, Zhenyu & Kirkby, Justin Lars & Nguyen, Duy, 2020. "Nonparametric Density Estimation By B-Spline Duality," Econometric Theory, Cambridge University Press, vol. 36(2), pages 250-291, April.
    14. Xiongtao Dai & Hans-Georg Müller & Fang Yao, 2017. "Optimal Bayes classifiers for functional data and density ratios," Biometrika, Biometrika Trust, vol. 104(3), pages 545-560.
    15. Leitao, Álvaro & Ortiz-Gracia, Luis, 2020. "Model-free computation of risk contributions in credit portfolios," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    16. Josep J. Masdemont & Luis Ortiz-Gracia, 2014. "Haar wavelets-based approach for quantifying credit portfolio losses," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1587-1595, September.
    17. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    18. Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim M. Almanjahie & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Estimating the Conditional Density in Scalar-On-Function Regression Structure: k -N-N Local Linear Approach," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    2. Bouabsa Wahiba, 2023. "The Estimating of the Conditional Density with Application to the Mode Function in Scalar-On-Function Regression Structure: Local Linear Approach with Missing at Random," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 27(1), pages 17-32, March.
    3. Yanchun Zhao & Mengzhu Zhang & Qian Ni & Xuhui Wang, 2023. "Adaptive Nonparametric Density Estimation with B-Spline Bases," Mathematics, MDPI, vol. 11(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanchun Zhao & Mengzhu Zhang & Qian Ni & Xuhui Wang, 2023. "Adaptive Nonparametric Density Estimation with B-Spline Bases," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
    2. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    3. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    4. Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
    5. Koo, Ja-Yong, 1998. "Convergence Rates for Logspline Tomography," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 367-384, November.
    6. Wang, Yayun & Zhang, Zhimin & Yu, Wenguang, 2021. "Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    7. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    8. Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    9. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    10. Laurent Gardes & Armelle Guillou & Claire Roman, 2020. "Estimation of extreme conditional quantiles under a general tail-first-order condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 915-943, August.
    11. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    12. Emil Cornea & Hongtu Zhu & Peter Kim & Joseph G. Ibrahim, 2017. "Regression models on Riemannian symmetric spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 463-482, March.
    13. Xuejun Jin & Hongze Li & Bin Yu, 2023. "The day‐of‐the‐month effect and the performance of the dollar cost averaging strategy: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(S1), pages 797-815, April.
    14. Chang, Meng-Shiuh & Wu, Ximing, 2015. "Transformation-based nonparametric estimation of multivariate densities," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 71-88.
    15. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    16. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.
    17. Tobias Behrens & Gero Junike & Wim Schoutens, 2023. "Failure of Fourier pricing techniques to approximate the Greeks," Papers 2306.08421, arXiv.org, revised Nov 2024.
    18. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    19. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    20. Koenker, Roger & Portnoy, Stephen, 2000. "Some pathological regression asymptotics under stable conditions," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 219-228, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:159:y:2021:i:c:s0167947321000360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.