IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v28y2018i3p877-919.html
   My bibliography  Save this article

Error analysis of finite difference and Markov chain approximations for option pricing

Author

Listed:
  • Lingfei Li
  • Gongqiu Zhang

Abstract

Mijatović and Pistorius proposed an efficient Markov chain approximation method for pricing European and barrier options in general one†dimensional Markovian models. However, sharp convergence rates of this method for realistic financial payoffs, which are nonsmooth, are rarely available. In this paper, we solve this problem for general one†dimensional diffusion models, which play a fundamental role in financial applications. For such models, the Markov chain approximation method is equivalent to the method of lines using the central difference. Our analysis is based on the spectral representation of the exact solution and the approximate solution. By establishing the convergence rate for the eigenvalues and the eigenfunctions, we obtain sharp convergence rates for the transition density and the price of options with nonsmooth payoffs. In particular, we show that for call†/put†type payoffs, convergence is second order, while for digital†type payoffs, convergence is generally only first order. Furthermore, we provide theoretical justification for two well†known smoothing techniques that can restore second†order convergence for digital†type payoffs and explain oscillations observed in the convergence for options with nonsmooth payoffs. As an extension, we also establish sharp convergence rates for European options for a rich class of Markovian jump models constructed from diffusions via subordination. The theoretical estimates are confirmed using numerical examples.

Suggested Citation

  • Lingfei Li & Gongqiu Zhang, 2018. "Error analysis of finite difference and Markov chain approximations for option pricing," Mathematical Finance, Wiley Blackwell, vol. 28(3), pages 877-919, July.
  • Handle: RePEc:bla:mathfi:v:28:y:2018:i:3:p:877-919
    DOI: 10.1111/mafi.12161
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12161
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    3. Akihiro Kaneko, 2023. "Multi-stage Euler-Maruyama methods for backward stochastic differential equations driven by continuous-time Markov chains," Papers 2311.08826, arXiv.org, revised Nov 2023.
    4. Yeda Cui & Lingfei Li & Gongqiu Zhang, 2024. "Pricing and hedging autocallable products by Markov chain approximation," Review of Derivatives Research, Springer, vol. 27(3), pages 259-303, October.
    5. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    6. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    7. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    8. Ding, Kailin & Ning, Ning, 2021. "Markov chain approximation and measure change for time-inhomogeneous stochastic processes," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
    10. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    11. Sebastian F. Tudor & Rupak Chatterjee & Igor Tydniouk, 2021. "On a new parametrization class of solvable diffusion models and transition probability kernels," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1773-1790, October.
    12. Meier, Christian & Li, Lingfei & Zhang, Gongqiu, 2023. "Simulation of multidimensional diffusions with sticky boundaries via Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1292-1308.
    13. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    14. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    15. Christian Meier & Lingfei Li & Gongqiu Zhang, 2019. "Markov Chain Approximation of One-Dimensional Sticky Diffusions," Papers 1910.14282, arXiv.org.
    16. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Parisian Stopping Times under Markov Processes," Papers 2107.06605, arXiv.org.
    17. Zhang, Zhimin & Zhong, Wei, 2024. "Efficient valuation of guaranteed minimum accumulation benefits in regime switching jump diffusion models with lapse risk," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    18. Jie Chen & Liaoyuan Fan & Lingfei Li & Gongqiu Zhang, 2022. "A multidimensional Hilbert transform approach for barrier option pricing and survival probability calculation," Review of Derivatives Research, Springer, vol. 25(2), pages 189-232, July.
    19. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    20. Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
    21. Christian Meier & Lingfei Li & Gongqiu Zhang, 2021. "Simulation of Multidimensional Diffusions with Sticky Boundaries via Markov Chain Approximation," Papers 2107.04260, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:28:y:2018:i:3:p:877-919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.