IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v27y2017i1p194-223.html
   My bibliography  Save this article

On The Martingale Property In Stochastic Volatility Models Based On Time-Homogeneous Diffusions

Author

Listed:
  • Carole Bernard
  • Zhenyu Cui
  • Don McLeish

Abstract

No abstract is available for this item.

Suggested Citation

  • Carole Bernard & Zhenyu Cui & Don McLeish, 2017. "On The Martingale Property In Stochastic Volatility Models Based On Time-Homogeneous Diffusions," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 194-223, January.
  • Handle: RePEc:bla:mathfi:v:27:y:2017:i:1:p:194-223
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/mafi.2017.27.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    2. Robert Jarrow & Philip Protter, 2020. "Credit Risk, Liquidity, and Bubbles," International Review of Finance, International Review of Finance Ltd., vol. 20(3), pages 737-746, September.
    3. Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    4. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    5. Philip Protter & Aditi Dandapani, 2019. "Strict Local Martingales and the Khasminskii test for Explosions," Papers 1903.02383, arXiv.org.
    6. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    7. Dan Pirjol & Lingjiong Zhu, 2017. "Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model," Papers 1707.00899, arXiv.org.
    8. Sascha Desmettre & Gunther Leobacher & L. C. G. Rogers, 2021. "Change of drift in one-dimensional diffusions," Finance and Stochastics, Springer, vol. 25(2), pages 359-381, April.
    9. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    10. Dandapani, Aditi & Protter, Philip, 2022. "Strict local martingales and the Khasminskii test for explosions," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 716-728.
    11. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    12. Giorgio Ferrari & Tiziano Vargiolu, 2020. "On the singular control of exchange rates," Annals of Operations Research, Springer, vol. 292(2), pages 795-832, September.
    13. David Criens, 2018. "No Arbitrage in Continuous Financial Markets," Papers 1809.09588, arXiv.org, revised Feb 2020.
    14. Dan Pirjol & Lingjiong Zhu, 2018. "Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 289-331, March.
    15. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:27:y:2017:i:1:p:194-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.