IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v452y2023ics0096300323002436.html
   My bibliography  Save this article

Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation

Author

Listed:
  • Teng, Ye
  • Zhang, Zhimin

Abstract

In this paper, we use a Cox risk model to describe the surplus flow of an insurance company, where the intensity process in the Cox process is assumed to follow a general stochastic differential equation. Suppose that the insurer observes the surplus process periodically with constant observation frequency. Whenever the observed surplus level is larger than a critical level b2>0, the excess amount is paid as a lump sum of dividends; whenever the observed surplus level is between zero and another critical level b1 (0

Suggested Citation

  • Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
  • Handle: RePEc:eee:apmaco:v:452:y:2023:i:c:s0096300323002436
    DOI: 10.1016/j.amc.2023.128074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323002436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheung, Eric C.K. & Feng, Runhuan, 2013. "A unified analysis of claim costs up to ruin in a Markovian arrival risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 98-109.
    2. Feng, Runhuan, 2009. "On the total operating costs up to default in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 305-314, October.
    3. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    4. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    5. Avanzi, Benjamin & Cheung, Eric C.K. & Wong, Bernard & Woo, Jae-Kyung, 2013. "On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 98-113.
    6. Jiwook Jang & Jong Jun Park & Hyun Jin Jang, 2018. "Catastrophe Insurance Derivatives Pricing Using A Cox Process With Jump Diffusion Cir Intensity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-20, November.
    7. Zhao, Yongxia & Chen, Ping & Yang, Hailiang, 2017. "Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 135-146.
    8. Eric C.K. Cheung & Runhuan Feng, 2019. "Potential measures and expected present value of operating costs until ruin in renewal risk models with general interclaim times," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(5), pages 355-386, May.
    9. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," LSE Research Online Documents on Economics 64051, London School of Economics and Political Science, LSE Library.
    10. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    11. Wang, Guanqing & Wang, Guojing & Yang, Hailiang, 2016. "On a multi-dimensional risk model with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 73-83.
    12. John Buffington & Robert J. Elliott, 2002. "American Options With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 497-514.
    13. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    14. Hans Gerber & Elias Shiu, 2006. "On Optimal Dividend Strategies In The Compound Poisson Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 76-93.
    15. Kei Noba & Jos'e-Luis P'erez & Kazutoshi Yamazaki & Kouji Yano, 2017. "On optimal periodic dividend strategies for L\'evy risk processes," Papers 1708.01678, arXiv.org, revised Feb 2018.
    16. Hansjörg Albrecher & Søren Asmussen c, 2006. "Ruin probabilities and aggregrate claims distributions for shot noise Cox processes," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2006(2), pages 86-110.
    17. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    18. Feng, Runhuan, 2011. "An operator-based approach to the analysis of ruin-related quantities in jump diffusion risk models," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 304-313, March.
    19. Albrecher, Hansjörg & Cheung, Eric C.K. & Thonhauser, Stefan, 2011. "Randomized Observation Periods for the Compound Poisson Risk Model: Dividends," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 645-672, November.
    20. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    21. Seal, Hilary L., 1983. "The poisson process: Its failure in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 2(4), pages 287-288, October.
    22. Runhuan Feng & Yasutaka Shimizu, 2013. "On a Generalization from Ruin to Default in a Lévy Insurance Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 773-802, December.
    23. Ciyu Nie & David C.M. Dickson & Shuanming Li, 2015. "The finite time ruin probability in a risk model with capital injections," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2015(4), pages 301-318, May.
    24. Chia Chun Lo & Konstantinos Skindilias, 2014. "An Improved Markov Chain Approximation Methodology: Derivatives Pricing And Model Calibration," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-22.
    25. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    26. Brachetta, M. & Ceci, C., 2019. "Optimal proportional reinsurance and investment for stochastic factor models," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 15-33.
    27. Xie, Jiayi & Zhang, Zhimin, 2021. "Finite-time dividend problems in a Lévy risk model under periodic observation," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    28. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    29. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    30. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    2. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Teng, Ye & Zhang, Zhimin, 2023. "On a time-changed Lévy risk model with capital injections and periodic observation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 290-314.
    4. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2020. "Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 315-332.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    6. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    7. Marie-Claude Vachon & Anne Mackay, 2024. "A Unifying Approach for the Pricing of Debt Securities," Papers 2403.06303, arXiv.org, revised Oct 2024.
    8. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    9. Xie, Jiayi & Zhang, Zhimin, 2021. "Finite-time dividend problems in a Lévy risk model under periodic observation," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    10. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    11. Wang, Yayun & Zhang, Zhimin & Yu, Wenguang, 2021. "Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    12. Rupak Chatterjee & Zhenyu Cui & Jiacheng Fan & Mingzhe Liu, 2018. "An efficient and stable method for short maturity Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(12), pages 1470-1486, December.
    13. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    14. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    15. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.
    16. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    17. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    18. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    19. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    20. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:452:y:2023:i:c:s0096300323002436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.