IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.06398.html
   My bibliography  Save this paper

VIX options in the SABR model

Author

Listed:
  • Dan Pirjol
  • Lingjiong Zhu

Abstract

We study the pricing of VIX options in the SABR model $dS_t = \sigma_t S_t^\beta dB_t, d\sigma_t = \omega \sigma_t dZ_t$ where $B_t,Z_t$ are standard Brownian motions correlated with correlation $\rho

Suggested Citation

  • Dan Pirjol & Lingjiong Zhu, 2025. "VIX options in the SABR model," Papers 2501.06398, arXiv.org.
  • Handle: RePEc:arx:papers:2501.06398
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.06398
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:wpaper:hal-03909334 is not listed on IDEAS
    2. Peixuan Yuan, 2022. "Time-Varying Skew in VIX Derivatives Pricing," Management Science, INFORMS, vol. 68(10), pages 7761-7791, October.
    3. Christa Cuchiero & Guido Gazzani & Janka Möller & Sara Svaluto‐Ferro, 2025. "Joint calibration to SPX and VIX options with signature‐based models," Mathematical Finance, Wiley Blackwell, vol. 35(1), pages 161-213, January.
    4. H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    6. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    7. Martin Forde & Benjamin Smith, 2023. "Markovian Stochastic Volatility With Stochastic Correlation €” Joint Calibration And Consistency Of Spx/Vix Short-Maturity Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 26(02n03), pages 1-42, May.
    8. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Papers 2212.10917, arXiv.org, revised May 2023.
    9. Olesya Grishchenko & Xiao Han & Victor Nistor, 2020. "A Volatility-Of-Volatility Expansion Of The Option Prices In The Sabr Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 1-49, May.
    10. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2023. "The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles," Post-Print hal-03909334, HAL.
    11. Hongkai Cao & Alexandru Badescu & Zhenyu Cui & Sarath Kumar Jayaraman, 2020. "Valuation of VIX and target volatility options with affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1880-1917, December.
    12. Chen Tong & Zhuo Huang, 2021. "Pricing VIX options with realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1180-1200, August.
    13. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv.
    14. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    15. Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.
    16. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Pirjol & Xiaoyu Wang & Lingjiong Zhu, 2024. "Short-maturity asymptotics for VIX and European options in local-stochastic volatility models," Papers 2407.16813, arXiv.org.
    2. Chen Tong & Zhuo Huang & Tianyi Wang, 2022. "Do VIX futures contribute to the valuation of VIX options?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1644-1664, September.
    3. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    4. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    5. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    6. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    7. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    8. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    9. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    10. Venter, Pierre J & Maré, Eben, 2022. "Price discovery in the volatility index option market: A univariate GARCH approach," Finance Research Letters, Elsevier, vol. 44(C).
    11. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
    12. Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
    13. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    14. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    15. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
    16. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    17. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    18. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    19. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    20. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.06398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.