IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.02797.html
   My bibliography  Save this paper

Option pricing under the normal SABR model with Gaussian quadratures

Author

Listed:
  • Jaehyuk Choi
  • Byoung Ki Seo

Abstract

The stochastic-alpha-beta-rho (SABR) model has been widely adopted in options trading. In particular, the normal ($\beta=0$) SABR model is a popular model choice for interest rates because it allows negative asset values. The option price and delta under the SABR model are typically obtained via asymptotic implied volatility approximation, but these are often inaccurate and arbitrageable. Using a recently discovered price transition law, we propose a Gaussian quadrature integration scheme for price options under the normal SABR model. The compound Gaussian quadrature sum over only 49 points can calculate a very accurate price and delta that are arbitrage-free.

Suggested Citation

  • Jaehyuk Choi & Byoung Ki Seo, 2023. "Option pricing under the normal SABR model with Gaussian quadratures," Papers 2301.02797, arXiv.org.
  • Handle: RePEc:arx:papers:2301.02797
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.02797
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Chen & Cornelis W. Oosterlee & Hans Van Der Weide, 2012. "A Low-Bias Simulation Scheme For The Sabr Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-37.
    2. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    3. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    4. Nan Chen & Nian Yang, 2019. "The principle of not feeling the boundary for the SABR model," Quantitative Finance, Taylor & Francis Journals, vol. 19(3), pages 427-436, March.
    5. Jaehyuk Choi & Lixin Wu, 2021. "A note on the option price and ‘Mass at zero in the uncorrelated SABR model and implied volatility asymptotics’," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1083-1086, July.
    6. Ning Cai & Yingda Song & Nan Chen, 2017. "Exact Simulation of the SABR Model," Operations Research, INFORMS, vol. 65(4), pages 931-951, August.
    7. Archil Gulisashvili & Blanka Horvath & Antoine Jacquier, 2018. "Mass at zero in the uncorrelated SABR model and implied volatility asymptotics," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1753-1765, October.
    8. Choi, Jaehyuk & Wu, Lixin, 2021. "The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    9. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    10. Yang, Nian & Chen, Nan & Liu, Yanchu & Wan, Xiangwei, 2017. "Approximate arbitrage-free option pricing under the SABR model," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 198-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Jaehyuk & Wu, Lixin, 2021. "The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    2. Jaehyuk Choi & Lilian Hu & Yue Kuen Kwok, 2024. "Efficient simulation of the SABR model," Papers 2408.01898, arXiv.org.
    3. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    4. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.
    5. Jaehyuk Choi & Lixin Wu, 2021. "A note on the option price and ‘Mass at zero in the uncorrelated SABR model and implied volatility asymptotics’," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1083-1086, July.
    6. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    7. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2021. "A Black-Scholes user's guide to the Bachelier model," Papers 2104.08686, arXiv.org, revised Feb 2022.
    8. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    9. Wan, Xiangwei & Yang, Nian, 2021. "Hermite expansion of transition densities and European option prices for multivariate diffusions with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    10. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    11. Jaehyuk Choi & Yue Kuen Kwok, 2023. "Simulation schemes for the Heston model with Poisson conditioning," Papers 2301.02800, arXiv.org, revised Nov 2023.
    12. Brignone, Riccardo & Gonzato, Luca, 2024. "Exact simulation of the Hull and White stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    13. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    14. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    15. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    16. Matthew Lorig & Natchanon Suaysom, 2021. "Options on Bonds: Implied Volatilities from Affine Short-Rate Dynamics," Papers 2106.04518, arXiv.org.
    17. Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
    18. Filippo de Feo, 2020. "The Averaging Principle for Non-autonomous Slow-fast Stochastic Differential Equations and an Application to a Local Stochastic Volatility Model," Papers 2012.09082, arXiv.org, revised Jan 2021.
    19. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    20. Akihiko Takahashi & Toshihiro Yamada, 2015. "On Error Estimates for Asymptotic Expansions with Malliavin Weights: Application to Stochastic Volatility Model," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 513-541, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.02797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.