IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i3p775-796.html
   My bibliography  Save this article

Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods

Author

Listed:
  • Zhang, Zhengxin
  • Si, Xiaosheng
  • Hu, Changhua
  • Lei, Yaguo

Abstract

Degradation-based modeling methods have been recognized as an essential and effective approach for lifetime and remaining useful life (RUL) estimations for various health management activities that can be scheduled to ensure reliable, safe, and economical operation of deteriorating systems. As one of the most popular stochastic modeling methods, the previous several decades have witnessed remarkable developments and extensive applications of Wiener-process-based methods. However, there is no systematic review particularly focused on this topic. Therefore, this paper reviews recent modeling developments of the Wiener-process-based methods for degradation data analysis and RUL estimation, as well as their applications in the field of prognostics and health management (PHM). After a brief introduction of conventional Wiener-process-based degradation models, we pay particular attention to variants of the Wiener process by considering nonlinearity, multi-source variability, covariates, and multivariate involved in the degradation processes. In addition, we discuss the applications of the Wiener-process-based models for degradation test design and optimal decision-making activities such as inspection, condition-based maintenance (CBM), and replacement. Finally, we highlight several future challenges deserving further studies.

Suggested Citation

  • Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:3:p:775-796
    DOI: 10.1016/j.ejor.2018.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718301486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorton, A. & Fouladirad, M. & Grall, A., 2013. "A methodology for probabilistic model-based prognosis," European Journal of Operational Research, Elsevier, vol. 225(3), pages 443-454.
    2. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    3. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    4. Nicolai, Robin P. & Dekker, Rommert & van Noortwijk, Jan M., 2007. "A comparison of models for measurable deterioration: An application to coatings on steel structures," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1635-1650.
    5. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    6. Mel‐Ling Ting Lee & Victor DeGruttola & David Schoenfeld, 2000. "A model for markers and latent health status," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 747-762.
    7. Heonsang Lim & Bong-Jin Yum, 2011. "Optimal design of accelerated degradation tests based on Wiener process models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 309-325, September.
    8. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    9. Carr, Matthew J. & Wang, Wenbin, 2011. "An approximate algorithm for prognostic modelling using condition monitoring information," European Journal of Operational Research, Elsevier, vol. 211(1), pages 90-96, May.
    10. Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
    11. Khac Tuan Huynh & Inma T. Castro & Anne Barros & Christophe Bérenguer, 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," Post-Print hal-00790729, HAL.
    12. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    13. Crowder, Martin & Lawless, Jerald, 2007. "On a scheme for predictive maintenance," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1713-1722, February.
    14. Ariane Lorton & Mitra Fouladirad & Antoine Grall, 2013. "A methodology for probabilistic model-based prognosis," Post-Print hal-02284358, HAL.
    15. Bloch-Mercier, Sophie, 2002. "A preventive maintenance policy with sequential checking procedure for a Markov deteriorating system," European Journal of Operational Research, Elsevier, vol. 142(3), pages 548-576, November.
    16. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    17. Barker, C.T. & Newby, M.J., 2009. "Optimal non-periodic inspection for a multivariate degradation model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 33-43.
    18. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.
    19. Ye, Zhi-Sheng & Shen, Yan & Xie, Min, 2012. "Degradation-based burn-in with preventive maintenance," European Journal of Operational Research, Elsevier, vol. 221(2), pages 360-367.
    20. Zhai, Qingqing & Ye, Zhi-Sheng & Yang, Jun & Zhao, Yu, 2016. "Measurement errors in degradation-based burn-in," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 126-135.
    21. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    22. Ye, Zhi-Sheng, 2013. "On the conditional increments of degradation processes," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2531-2536.
    23. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    24. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    25. Nader Ebrahimi, 2005. "System reliability based on diffusion models for fatigue crack growth," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 46-57, February.
    26. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    27. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    28. Shengjin Tang & Xiaosong Guo & Zhijie Zhou, 2014. "Mis-specification analysis of linear Wiener process–based degradation models for the remaining useful life estimation," Journal of Risk and Reliability, , vol. 228(5), pages 478-487, October.
    29. R. Ahmadi, 2016. "An optimal replacement policy for complex multi-component systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5303-5316, September.
    30. Bo Lindqvist & Guro Skogsrud, 2009. "Modeling of dependent competing risks by first passage times of Wiener processes," IISE Transactions, Taylor & Francis Journals, vol. 41(1), pages 72-80.
    31. Linkan Bian & Nagi Gebraeel, 2014. "Stochastic modeling and real-time prognostics for multi-component systems with degradation rate interactions," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 470-482.
    32. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    33. Cha, Ji Hwan & Pulcini, Gianpaolo, 2016. "Optimal burn-in procedure for mixed populations based on the device degradation process history," European Journal of Operational Research, Elsevier, vol. 251(3), pages 988-998.
    34. Yin Shu & Qianmei Feng & Edward P.C. Kao & Hao Liu, 2016. "Lévy-driven non-Gaussian Ornstein–Uhlenbeck processes for degradation-based reliability analysis," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 993-1003, November.
    35. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    36. Xiao Liu & Khalifa N. Al-Khalifa & Elsayed A. Elsayed & David W. Coit & Abdelmagid S. Hamouda, 2014. "Criticality measures for components with multi-dimensional degradation," IISE Transactions, Taylor & Francis Journals, vol. 46(10), pages 987-998, October.
    37. Haitao Liao & Elsayed A. Elsayed, 2006. "Reliability inference for field conditions from accelerated degradation testing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(6), pages 576-587, September.
    38. Kurt, Murat & Kharoufeh, Jeffrey P., 2010. "Optimally maintaining a Markovian deteriorating system with limited imperfect repairs," European Journal of Operational Research, Elsevier, vol. 205(2), pages 368-380, September.
    39. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    40. Dong, Ming & He, David, 2007. "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, Elsevier, vol. 178(3), pages 858-878, May.
    41. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    42. Yin Shu & Qianmei Feng & David W. Coit, 2015. "Life distribution analysis based on Lévy subordinators for degradation with random jumps," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 483-492, September.
    43. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    44. Qiang Zhou & Junbo Son & Shiyu Zhou & Xiaofeng Mao & Mutasim Salman, 2014. "Remaining useful life prediction of individual units subject to hard failure," IISE Transactions, Taylor & Francis Journals, vol. 46(10), pages 1017-1030, October.
    45. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    46. Rensheng Zhou & Nagi Gebraeel & Nicoleta Serban, 2012. "Degradation modeling and monitoring of truncated degradation signals," IISE Transactions, Taylor & Francis Journals, vol. 44(9), pages 793-803.
    47. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    48. D. N. P. Murthy & B. P. Iskandar & R. J. Wilson, 1995. "Two-Dimensional Failure-Free Warranty Policies: Two-Dimensional Point Process Models," Operations Research, INFORMS, vol. 43(2), pages 356-366, April.
    49. Wang, Wenbin, 2007. "A two-stage prognosis model in condition based maintenance," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1177-1187, November.
    50. Sheu, Shey-Huei & Chien, Yu-Hung, 2005. "Optimal burn-in time to minimize the cost for general repairable products sold under warranty," European Journal of Operational Research, Elsevier, vol. 163(2), pages 445-461, June.
    51. Aniello Buonocore & Luigia Caputo & Enrica Pirozzi & Luigi M. Ricciardi, 2011. "The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 29-57, March.
    52. Haitao Liao & Zhigang Tian, 2013. "A framework for predicting the remaining useful life of a single unit under time-varying operating conditions," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 964-980.
    53. Si, Xiao-Sheng & Chen, Mao-Yin & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "Specifying measurement errors for required lifetime estimation performance," European Journal of Operational Research, Elsevier, vol. 231(3), pages 631-644.
    54. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    55. Si, Xiao-Sheng & Wang, Wenbin & Chen, Mao-Yin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution," European Journal of Operational Research, Elsevier, vol. 226(1), pages 53-66.
    56. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    57. Wang, Wenbin, 2012. "A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 218(3), pages 726-734.
    58. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    59. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    60. John A. Flory & Jeffrey P. Kharoufeh & Nagi Z. Gebraeel, 2014. "A switching diffusion model for lifetime estimation in randomly varying environments," IISE Transactions, Taylor & Francis Journals, vol. 46(11), pages 1227-1241, November.
    61. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    62. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    63. Hui-bing Hao & Chun Su & Zhong-zhou Qu, 2013. "Reliability Analysis for Mechanical Components Subject to Degradation Process and Random Shock with Wiener Process," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 531-543, Springer.
    64. Egorov, Alexei V. & Li, Haitao & Xu, Yuewu, 2003. "Maximum likelihood estimation of time-inhomogeneous diffusions," Journal of Econometrics, Elsevier, vol. 114(1), pages 107-139, May.
    65. Huang, Jianlin & Golubović, Dušan S & Koh, Sau & Yang, Daoguo & Li, Xiupeng & Fan, Xuejun & Zhang, G.Q., 2016. "Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 152-159.
    66. Wen, M. & Li, R. & Salling, K.B., 2016. "Optimization of preventive condition-based tamping for railway tracks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 455-465.
    67. Jen Tang & Tsui‐Shu Su, 2008. "Estimating failure time distribution and its parameters based on intermediate data from a Wiener degradation model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 265-276, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    2. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    3. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    5. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    6. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    7. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    8. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    9. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    10. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    11. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    12. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    14. Shengjin Tang & Xiaosong Guo & Zhijie Zhou, 2014. "Mis-specification analysis of linear Wiener process–based degradation models for the remaining useful life estimation," Journal of Risk and Reliability, , vol. 228(5), pages 478-487, October.
    15. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    16. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    17. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    19. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    20. Hongda Gao & Dejing Kong & Yixin Sun, 2022. "Reliability modeling and analysis for systems governed by multiple competing failures processes," Journal of Risk and Reliability, , vol. 236(2), pages 256-265, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:3:p:775-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.