IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v62y2000i4p747-762.html
   My bibliography  Save this article

A model for markers and latent health status

Author

Listed:
  • Mel‐Ling Ting Lee
  • Victor DeGruttola
  • David Schoenfeld

Abstract

We extend the bivariate Wiener process considered by Whitmore and co‐workers and model the joint process of a marker and health status. The health status process is assumed to be latent or unobservable. The time to reach the primary end point or failure (death, onset of disease, etc.) is the time when the latent health status process first crosses a failure threshold level. Inferences for the model are based on two kinds of data: censored survival data and marker measurements. Covariates, such as treatment variables, risk factors and base‐line conditions, are related to the model parameters through generalized linear regression functions. The model offers a much richer potential for the study of treatment efficacy than do conventional models. Treatment effects can be assessed in terms of their influence on both the failure threshold and the health status process parameters. We derive an explicit formula for the prediction of residual failure times given the current marker level. Also we discuss model validation. This model does not require the proportional hazards assumption and hence can be widely used. To demonstrate the usefulness of the model, we apply the methods in analysing data from the protocol 116a of the AIDS Clinical Trials Group.

Suggested Citation

  • Mel‐Ling Ting Lee & Victor DeGruttola & David Schoenfeld, 2000. "A model for markers and latent health status," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 747-762.
  • Handle: RePEc:bla:jorssb:v:62:y:2000:i:4:p:747-762
    DOI: 10.1111/1467-9868.00261
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00261
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei-Ling Ting Lee & G. A. Whitmore, 2023. "Semiparametric predictive inference for failure data using first-hitting-time threshold regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 508-536, July.
    2. Masaaki Kijima & Teruyoshi Suzuki & Keiichi Tanaka, 2009. "A latent process model for the pricing of corporate securities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 439-455, July.
    3. Mosayebi Omshi, E. & Shemehsavar, S. & Grall, A., 2024. "An intelligent maintenance policy for a latent degradation system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Tong Xingwei & He Xin & Sun Jianguo & Lee Mei-Ling T, 2008. "Joint Analysis of Current Status and Marker Data: An Extension of a Bivariate Threshold Model," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-14, October.
    5. Jen Tang & Tsui‐Shu Su, 2008. "Estimating failure time distribution and its parameters based on intermediate data from a Wiener degradation model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 265-276, April.
    6. Deng, Yingjun & Bucchianico, Alessandro Di & Pechenizkiy, Mykola, 2020. "Controlling the accuracy and uncertainty trade-off in RUL prediction with a surrogate Wiener propagation model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    7. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    8. Lin, Huazhen & Li, Yi & Tan, Ming T., 2013. "Estimating a unitary effect summary based on combined survival and quantitative outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 129-139.
    9. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:62:y:2000:i:4:p:747-762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.