IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v13y2011i1d10.1007_s11009-009-9132-8.html
   My bibliography  Save this article

The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model

Author

Listed:
  • Aniello Buonocore

    (Università di Napoli Federico II)

  • Luigia Caputo

    (Università di Torino)

  • Enrica Pirozzi

    (Università di Napoli Federico II)

  • Luigi M. Ricciardi

    (Università di Napoli Federico II)

Abstract

Motivated by some unsolved problems of biological interest, such as the description of firing probability densities for Leaky Integrate-and-Fire neuronal models, we consider the first-passage-time problem for Gauss-diffusion processes along the line of Mehr and McFadden (J R Stat Soc B 27:505–522, 1965). This is essentially based on a space-time transformation, originally due to Doob (Ann Math Stat 20:393–403, 1949), by which any Gauss-Markov process can expressed in terms of the standard Wiener process. Starting with an analysis that pinpoints certain properties of mean and autocovariance of a Gauss-Markov process, we are led to the formulation of some numerical and time-asymptotically analytical methods for evaluating first-passage-time probability density functions for Gauss-diffusion processes. Implementations for neuronal models under various parameter choices of biological significance confirm the expected excellent accuracy of our methods.

Suggested Citation

  • Aniello Buonocore & Luigia Caputo & Enrica Pirozzi & Luigi M. Ricciardi, 2011. "The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 29-57, March.
  • Handle: RePEc:spr:metcap:v:13:y:2011:i:1:d:10.1007_s11009-009-9132-8
    DOI: 10.1007/s11009-009-9132-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-009-9132-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-009-9132-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schindler, Michael & Talkner, Peter & Hänggi, Peter, 2005. "Escape rates in periodically driven Markov processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(1), pages 40-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ascione, Giacomo & D’Onofrio, Giuseppe & Kostal, Lubomir & Pirozzi, Enrica, 2020. "An optimal Gauss–Markov approximation for a process with stochastic drift and applications," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6481-6514.
    2. Buonocore, A. & Caputo, L. & Nobile, A.G. & Pirozzi, E., 2014. "Gauss–Markov processes in the presence of a reflecting boundary and applications in neuronal models," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 799-809.
    3. Giacomo Ascione & Bruno Toaldo, 2019. "A Semi-Markov Leaky Integrate-and-Fire Model," Mathematics, MDPI, vol. 7(11), pages 1-24, October.
    4. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    5. Giacomo Ascione & Yuliya Mishura & Enrica Pirozzi, 2021. "Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 53-84, March.
    6. Abundo, Mario & Pirozzi, Enrica, 2018. "Integrated stationary Ornstein–Uhlenbeck process, and double integral processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 265-275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    2. Duan, Wei-Long & Fang, Hui & Zeng, Chunhua, 2019. "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 96-102.
    3. Buonocore, A. & Caputo, L. & Nobile, A.G. & Pirozzi, E., 2014. "Gauss–Markov processes in the presence of a reflecting boundary and applications in neuronal models," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 799-809.
    4. Meier, Christian & Li, Lingfei & Zhang, Gongqiu, 2023. "Simulation of multidimensional diffusions with sticky boundaries via Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1292-1308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:1:d:10.1007_s11009-009-9132-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.