IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v44y2012i9p793-803.html
   My bibliography  Save this article

Degradation modeling and monitoring of truncated degradation signals

Author

Listed:
  • Rensheng Zhou
  • Nagi Gebraeel
  • Nicoleta Serban

Abstract

Advancements in condition monitoring techniques have facilitated the utilization of sensor technology for predicting failures of engineering systems. Within this context, failure is defined as the point where a sensor-based degradation signal reaches a pre-specified failure threshold. Parametric degradation models rely on complete signals to estimate the parametric functional form and do not perform well with sparse historical data. On the other hand, non-parametric models that address the challenges of data sparsity usually assume that signal observations can be made beyond the failure threshold. Unfortunately, in most applications, degradation signals can only be observed up to the failure threshold resulting in what this article refers to as truncated degradation signals. This article combines a non-parametric degradation modeling framework with a signal transformation procedure, allowing different types of truncated degradation signals to be characterized. This article considers (i) complete signals that result from constant monitoring of a system up to its failure; (ii) sparse signals resulting from sparse observations; and (iii) fragmented signals that result from dense observations over disjoint time intervals. The goal is to estimate and update the residual life distributions of partially degraded systems using in situ signal observations. It is showed that the proposed model outperforms existing models for all three signal types.

Suggested Citation

  • Rensheng Zhou & Nagi Gebraeel & Nicoleta Serban, 2012. "Degradation modeling and monitoring of truncated degradation signals," IISE Transactions, Taylor & Francis Journals, vol. 44(9), pages 793-803.
  • Handle: RePEc:taf:uiiexx:v:44:y:2012:i:9:p:793-803
    DOI: 10.1080/0740817X.2011.618175
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2011.618175
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2011.618175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Son, Junbo & Zhou, Shiyu & Sankavaram, Chaitanya & Du, Xinyu & Zhang, Yilu, 2016. "Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 38-50.
    2. Li, Naipeng & Wang, Mingyang & Lei, Yaguo & Si, Xiaosheng & Yang, Bin & Li, Xiang, 2024. "A nonparametric degradation modeling method for remaining useful life prediction with fragment data," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Nicola Esposito & Agostino Mele & Bruno Castanier & Massimiliano Giorgio, 2023. "A new gamma degradation process with random effect and state-dependent measurement error," Journal of Risk and Reliability, , vol. 237(5), pages 868-885, October.
    4. Xiaolei Fang & Nagi Z. Gebraeel & Kamran Paynabar, 2017. "Scalable prognostic models for large-scale condition monitoring applications," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 698-710, July.
    5. Pulcini, Gianpaolo, 2016. "A perturbed gamma process with statistically dependent measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 296-306.
    6. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:44:y:2012:i:9:p:793-803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.