IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v153y2016icp75-87.html
   My bibliography  Save this article

Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective

Author

Listed:
  • Peng, Weiwen
  • Li, Yan-Feng
  • Mi, Jinhua
  • Yu, Le
  • Huang, Hong-Zhong

Abstract

Degradation analysis is critical to reliability assessment and operational management of complex systems. Two types of assumptions are often adopted for degradation analysis: (1) single degradation indicator and (2) constant external factors. However, modern complex systems are generally characterized as multiple functional and suffered from multiple failure modes due to dynamic operating conditions. In this paper, Bayesian degradation analysis of complex systems with multiple degradation indicators under dynamic conditions is investigated. Three practical engineering-driven issues are addressed: (1) to model various combinations of degradation indicators, a generalized multivariate hybrid degradation process model is proposed, which subsumes both monotonic and non-monotonic degradation processes models as special cases, (2) to study effects of external factors, two types of dynamic covariates are incorporated jointly, which include both environmental conditions and operating profiles, and (3) to facilitate degradation based reliability analysis, a serial of Bayesian strategy is constructed, which covers parameter estimation, factor-related degradation prediction, and unit-specific remaining useful life assessment. Finally, degradation analysis of a type of heavy machine tools is presented to demonstrate the application and performance of the proposed method. A comparison of the proposed model with a traditional model is studied as well in the example.

Suggested Citation

  • Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
  • Handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:75-87
    DOI: 10.1016/j.ress.2016.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
    2. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    3. Guida, M. & Postiglione, F. & Pulcini, G., 2012. "A time-discrete extended gamma process for time-dependent degradation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 73-79.
    4. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    5. Linkan Bian & Nagi Gebraeel, 2014. "Stochastic modeling and real-time prognostics for multi-component systems with degradation rate interactions," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 470-482.
    6. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    7. Haitao Liao & Zhigang Tian, 2013. "A framework for predicting the remaining useful life of a single unit under time-varying operating conditions," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 964-980.
    8. Jeffrey Kharoufeh & Christopher Solo & M. Ulukus, 2010. "Semi-Markov models for degradation-based reliability," IISE Transactions, Taylor & Francis Journals, vol. 42(8), pages 599-612.
    9. Wang, Wenbin, 2012. "A simulation-based multivariate Bayesian control chart for real time condition-based maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 218(3), pages 726-734.
    10. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    11. John A. Flory & Jeffrey P. Kharoufeh & Nagi Z. Gebraeel, 2014. "A switching diffusion model for lifetime estimation in randomly varying environments," IISE Transactions, Taylor & Francis Journals, vol. 46(11), pages 1227-1241, November.
    12. Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
    13. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    14. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    15. Bae, Suk Joo & Kuo, Way & Kvam, Paul H., 2007. "Degradation models and implied lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 601-608.
    16. David Lunn & Jessica Barrett & Michael Sweeting & Simon Thompson, 2013. "Fully Bayesian hierarchical modelling in two stages, with application to meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 551-572, August.
    17. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    18. Moghaddass, Ramin & Zuo, Ming J., 2014. "An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 92-104.
    19. Haitao Liao & Elsayed A. Elsayed, 2006. "Reliability inference for field conditions from accelerated degradation testing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(6), pages 576-587, September.
    20. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    21. Bae, Suk Joo & Yuan, Tao & Ning, Shuluo & Kuo, Way, 2015. "A Bayesian approach to modeling two-phase degradation using change-point regression," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 66-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Huyang & Fard, Nasser & Fang, Yuanchen, 2020. "Time series chain graph for modeling reliability covariates in degradation process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Minhee Kim & Todd Allen & Kaibo Liu, 2023. "Covariate Dependent Sparse Functional Data Analysis," INFORMS Joural on Data Science, INFORMS, vol. 2(1), pages 81-98, April.
    3. Long, Junqi & Chen, Chuanhai & Liu, Zhifeng & Guo, Jinyan & Chen, Weizheng, 2022. "Stochastic hybrid system approach to task-orientated remaining useful life prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
    5. Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Baojia Chen & Baoming Shen & Fajun Zhang & Wenrong Xiao & Fafa Chen & Hongliang Tian & Shu Chen, 2019. "Operation reliability evaluation of cutting tools based on singular value decomposition transform and support vector space," Journal of Risk and Reliability, , vol. 233(2), pages 175-185, April.
    7. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    8. Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.
    9. Li, He & Deng, Zhi-Ming & Golilarz, Noorbakhsh Amiri & Guedes Soares, C., 2021. "Reliability analysis of the main drive system of a CNC machine tool including early failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Liu, Di & Wang, Shaoping & Zhang, Chao, 2022. "Reliability estimation from two types of accelerated testing data based on an artificial neural network supported Wiener process," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    11. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Song, Wanqing & Duan, Shouwu & Zio, Enrico & Kudreyko, Aleksey, 2022. "Multifractional and long-range dependent characteristics for remaining useful life prediction of cracking gas compressor," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Yu Zang & Jiaxiang E & Lance Fiondella, 2024. "A Network Reliability Analysis Method for Complex Real-Time Systems: Case Studies in Railway and Maritime Systems," Mathematics, MDPI, vol. 12(19), pages 1-30, September.
    15. Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
    16. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    2. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    3. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    4. Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
    5. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    6. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    7. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    8. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    9. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    10. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Bian, Linkan & Si, Xiaosheng, 2019. "Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 88-100.
    13. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    14. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    15. Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    16. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Guo, Jingbo & Wang, Changxi & Cabrera, Javier & Elsayed, Elsayed A., 2018. "Improved inverse Gaussian process and bootstrap: Degradation and reliability metrics," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 269-277.
    18. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    19. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    20. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:75-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.