IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i3p988-998.html
   My bibliography  Save this article

Optimal burn-in procedure for mixed populations based on the device degradation process history

Author

Listed:
  • Cha, Ji Hwan
  • Pulcini, Gianpaolo

Abstract

Burn-in is a method of ‘elimination’ of initial failures (infant mortality). In the conventional burn-in procedures, to burn-in an item means to subject it to a fixed time period of simulated use prior to actual operation. Then, the items which failed during burn-in are just scrapped and only those which survived the burn-in procedure are considered to be of satisfactory quality. Thus, when the items are subject to degradation phenomena, those whose degradation levels at the end of burn-in exceed a given failure threshold level are eliminated. In this paper, we consider a new burn-in procedure for items subject to degradation phenomena and belonging to mixed populations composed of a weak and a strong subpopulation. The new procedure is based on the ‘whole history’ of the degradation process of an item periodically observed during the burn-in and utilizes the information contained in the observed degradation process to assess whether the item belongs to the strong or weak subpopulation. The problem of determining the optimal burn-in parameters is considered and the properties of the optimal parameters are derived. A numerical example is also provided to illustrate the theoretical results obtained in this paper.

Suggested Citation

  • Cha, Ji Hwan & Pulcini, Gianpaolo, 2016. "Optimal burn-in procedure for mixed populations based on the device degradation process history," European Journal of Operational Research, Elsevier, vol. 251(3), pages 988-998.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:988-998
    DOI: 10.1016/j.ejor.2015.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715011431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Zhi-Sheng & Shen, Yan & Xie, Min, 2012. "Degradation-based burn-in with preventive maintenance," European Journal of Operational Research, Elsevier, vol. 221(2), pages 360-367.
    2. Henry W. Block & Thomas H. Savits & Harshinder Singh, 2002. "A Criterion for Burn-in that Balances Mean Residual Life and Residual Variance," Operations Research, INFORMS, vol. 50(2), pages 290-296, April.
    3. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, March.
    4. Cha, Ji Hwan & Finkelstein, Maxim, 2010. "Burn-in by environmental shocks for two ordered subpopulations," European Journal of Operational Research, Elsevier, vol. 206(1), pages 111-117, October.
    5. Kim, Kyungmee O. & Kuo, Way, 2009. "Optimal burn-in for maximizing reliability of repairable non-series systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 140-151, February.
    6. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    7. Kim, Kyungmee O., 2011. "Burn-in considering yield loss and reliability gain for integrated circuits," European Journal of Operational Research, Elsevier, vol. 212(2), pages 337-344, July.
    8. Sheu, Shey-Huei & Chien, Yu-Hung, 2005. "Optimal burn-in time to minimize the cost for general repairable products sold under warranty," European Journal of Operational Research, Elsevier, vol. 163(2), pages 445-461, June.
    9. Maxim Finkelstein & Ji Hwan Cha, 2013. "Shocks as Burn-in," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 313-361, Springer.
    10. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    11. Cha, Ji Hwan & Finkelstein, Maxim, 2011. "Burn-in and the performance quality measures in heterogeneous populations," European Journal of Operational Research, Elsevier, vol. 210(2), pages 273-280, April.
    12. Jie Mi, 1996. "Minimizing Some Cost Functions Related to Both Burn-In and Field Use," Operations Research, INFORMS, vol. 44(3), pages 497-500, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Hwan Cha & Maxim Finkelstein, 2022. "A new warranty policy for heterogeneous items subject to monotone degradation processes," Journal of Risk and Reliability, , vol. 236(1), pages 55-65, February.
    2. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    3. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    4. Lucianne Varn & Stefanka Chukova & Richard Arnold, 2019. "A stochastic process for modeling failures of a system having a non-monotonic hazard rate function," Journal of Risk and Reliability, , vol. 233(5), pages 731-746, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Qingqing & Ye, Zhi-Sheng & Yang, Jun & Zhao, Yu, 2016. "Measurement errors in degradation-based burn-in," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 126-135.
    2. Cha, Ji Hwan & Finkelstein, Maxim, 2015. "Environmental stress screening modelling, analysis and optimization," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 149-155.
    3. Cha, Ji Hwan & Finkelstein, Maxim, 2010. "Burn-in by environmental shocks for two ordered subpopulations," European Journal of Operational Research, Elsevier, vol. 206(1), pages 111-117, October.
    4. Kim, Kyungmee O., 2011. "Burn-in considering yield loss and reliability gain for integrated circuits," European Journal of Operational Research, Elsevier, vol. 212(2), pages 337-344, July.
    5. Cha, Ji Hwan & Finkelstein, Maxim, 2011. "Burn-in and the performance quality measures in heterogeneous populations," European Journal of Operational Research, Elsevier, vol. 210(2), pages 273-280, April.
    6. Cha, Ji Hwan & Finkelstein, Maxim, 2013. "The failure rate dynamics in heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 120-128.
    7. Zhi-Sheng Ye & Loon-Ching Tang & Min Xie, 2014. "Bi-objective burn-in modeling and optimization," Annals of Operations Research, Springer, vol. 212(1), pages 201-214, January.
    8. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    9. Ji Cha & Maxim S. Finkelstein, 2009. "Stochastically ordered subpopulations and optimal burn-in procedure," MPIDR Working Papers WP-2009-030, Max Planck Institute for Demographic Research, Rostock, Germany.
    10. Finkelstein, Maxim & Ludick, Zani, 2014. "On some steady-state characteristics of systems with gradual repair," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 17-23.
    11. Ji Hwan Cha & F. G. Badía, 2021. "Variables acceptance reliability sampling plan based on degradation test," Statistical Papers, Springer, vol. 62(5), pages 2227-2245, October.
    12. Ji Hwan Cha & Maxim Finkelstein, 2012. "Burn-in and the performance quality measures in continuous heterogeneous populations," Journal of Risk and Reliability, , vol. 226(4), pages 417-425, August.
    13. M Shafiee & M Finkelstein & S Chukova, 2011. "Burn-in and imperfect preventive maintenance strategies for warranted products," Journal of Risk and Reliability, , vol. 225(2), pages 211-218, June.
    14. Maxim Finkelstein & Ji Hwan Cha, 2021. "On degradation-based imperfect repair and induced generalized renewal processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 1026-1045, December.
    15. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    16. Nil Kamal Hazra & Maxim Finkelstein, 2018. "On stochastic comparisons of finite mixtures for some semiparametric families of distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 988-1006, December.
    17. Finkelstein, Maxim, 2013. "On some comparisons of lifetimes for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 300-304.
    18. Mahmood Shafiee & Maxim Finkelstein, 2015. "A proactive group maintenance policy for continuously monitored deteriorating systems: Application to offshore wind turbines," Journal of Risk and Reliability, , vol. 229(5), pages 373-384, October.
    19. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    20. Mohammadi, Faezeh & Izadi, Muhyiddin & Lai, Chin-Diew, 2016. "On testing whether burn-in is required under the long-run average cost," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 217-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:988-998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.