IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v150y2016icp126-135.html
   My bibliography  Save this article

Measurement errors in degradation-based burn-in

Author

Listed:
  • Zhai, Qingqing
  • Ye, Zhi-Sheng
  • Yang, Jun
  • Zhao, Yu

Abstract

Burn-in is an effective tool to improve product reliability and reduce field failure costs before a product is sold to customers. As many products are becoming highly reliable, traditional burn-in that tests a batch of a product until most weak units fail requires an unaffordable testing duration. If the product failure can be associated with an underlying degradation process and a weak unit degrades faster than a normal one, then degradation-based burn-in can be implemented. Due to such various factors as human errors and limited precision of the measurement device, measurement errors are often inevitable. Ignoring measurement errors in the degradation observations would lead to inferior burn-in decisions. This study uses the Wiener process to model the underlying degradation and considers Gaussian measurement errors in the observations. Two burn-in models with different cost structures are studied and the optimal cutoff level for each model is obtained analytically. The relation between the two models is discussed, leading to a new cost model.

Suggested Citation

  • Zhai, Qingqing & Ye, Zhi-Sheng & Yang, Jun & Zhao, Yu, 2016. "Measurement errors in degradation-based burn-in," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 126-135.
  • Handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:126-135
    DOI: 10.1016/j.ress.2016.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016000247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Zhi-Sheng & Shen, Yan & Xie, Min, 2012. "Degradation-based burn-in with preventive maintenance," European Journal of Operational Research, Elsevier, vol. 221(2), pages 360-367.
    2. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    3. Cha, Ji Hwan & Finkelstein, Maxim, 2010. "Burn-in by environmental shocks for two ordered subpopulations," European Journal of Operational Research, Elsevier, vol. 206(1), pages 111-117, October.
    4. Kim, Kyungmee O., 2011. "Burn-in considering yield loss and reliability gain for integrated circuits," European Journal of Operational Research, Elsevier, vol. 212(2), pages 337-344, July.
    5. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    6. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    7. Ji Hwan Cha, 2011. "A Survey of Burn-in and Maintenance Models for Repairable Systems," Springer Series in Reliability Engineering, in: Lotfi Tadj & M.-Salah Ouali & Soumaya Yacout & Daoud Ait-Kadi (ed.), Replacement Models with Minimal Repair, pages 179-203, Springer.
    8. Anstett-Collin, F. & Goffart, J. & Mara, T. & Denis-Vidal, L., 2015. "Sensitivity analysis of complex models: Coping with dynamic and static inputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 268-275.
    9. Kim, Kyungmee O. & Kuo, Way, 2009. "Optimal burn-in for maximizing reliability of repairable non-series systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 140-151, February.
    10. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    11. Yisha Xiang & David W. Coit & Qianmei (May) Feng, 2014. "Accelerated burn-in and condition-based maintenance for -subpopulations subject to stochastic degradation," IISE Transactions, Taylor & Francis Journals, vol. 46(10), pages 1093-1106, October.
    12. Cha, Ji Hwan & Finkelstein, Maxim, 2011. "Burn-in and the performance quality measures in heterogeneous populations," European Journal of Operational Research, Elsevier, vol. 210(2), pages 273-280, April.
    13. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Donghui & Wei, Yantao & Fang, Houzhang & Yang, Wenzhi, 2018. "A reliability estimation approach via Wiener degradation model with measurement errors," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 131-141.
    2. Pan, Donghui & Liu, Jia-Bao & Yang, Wenzhi, 2018. "A new result on lifetime estimation based on skew-Wiener degradation model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 157-164.
    3. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    5. Chun-Ho Wang & Chao-Hui Huang & Deng-Guei You, 2022. "Condition-Based Multi-State-System Maintenance Models for Smart Grid System with Stochastic Power Supply and Demand," Sustainability, MDPI, vol. 14(13), pages 1-29, June.
    6. Jinsong Yu & Jie Yang & Diyin Tang & Jing Dai, 2018. "An Optimal Burn-In Policy for Cellular Phone Lithium-Ion Batteries Using a Feature Selection Strategy and Relevance Vector Machine," Energies, MDPI, vol. 11(11), pages 1-19, November.
    7. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2018. "Nonlinear step-stress accelerated degradation modelling considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 207-215.
    8. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    9. Li, Junxing & Wang, Zhihua & Zhang, Yongbo & Liu, Chengrui & Fu, Huimin, 2018. "A nonlinear Wiener process degradation model with autoregressive errors," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 48-57.
    10. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    11. Chen, Zhen & Pan, Ershun & Xia, Tangbin & Li, Yanting, 2020. "Optimal degradation-based burn-in policy using Tweedie exponential-dispersion process model with measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    3. Cha, Ji Hwan & Pulcini, Gianpaolo, 2016. "Optimal burn-in procedure for mixed populations based on the device degradation process history," European Journal of Operational Research, Elsevier, vol. 251(3), pages 988-998.
    4. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Huang, Jianlin & Golubović, Dušan S & Koh, Sau & Yang, Daoguo & Li, Xiupeng & Fan, Xuejun & Zhang, G.Q., 2016. "Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 152-159.
    6. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    7. Liu, Bin & Wu, Shaomin & Xie, Min & Kuo, Way, 2017. "A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost," European Journal of Operational Research, Elsevier, vol. 263(3), pages 879-887.
    8. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    9. Ye, Zhi-Sheng & Shen, Yan & Xie, Min, 2012. "Degradation-based burn-in with preventive maintenance," European Journal of Operational Research, Elsevier, vol. 221(2), pages 360-367.
    10. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Cha, Ji Hwan & Finkelstein, Maxim, 2015. "Environmental stress screening modelling, analysis and optimization," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 149-155.
    12. Kim, Kyungmee O., 2011. "Burn-in considering yield loss and reliability gain for integrated circuits," European Journal of Operational Research, Elsevier, vol. 212(2), pages 337-344, July.
    13. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    14. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    15. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Liu, Bin & Liang, Zhenglin & Parlikad, Ajith Kumar & Xie, Min & Kuo, Way, 2017. "Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 200-209.
    17. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    19. Dan Xu & Jiaolan He & Zhou Yang, 2022. "Reliability prediction based on Birnbaum–Saunders model and its application to smart meter," Annals of Operations Research, Springer, vol. 312(1), pages 519-532, May.
    20. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:126-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.