IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v252y2016i2p455-465.html
   My bibliography  Save this article

Optimization of preventive condition-based tamping for railway tracks

Author

Listed:
  • Wen, M.
  • Li, R.
  • Salling, K.B.

Abstract

This work considers the scheduling of railway preventive condition-based tamping, which is the maintenance operation performed to restore the track irregularities to ensure both safety and comfort for passengers and freight. The problem is to determine when to perform the tamping on which section for given railway tracks over a planning horizon. The objective is to minimize the Net Present Costs (NPC) considering the following technical and economic factors: 1) track quality (the standard deviation of the longitudinal level) degradation over time; 2) track quality thresholds based on train speed limits; 3) the impact of previous tamping operations on the track quality recovery; 4) track geometrical alignment; 5) tamping machine operation factors and finally 6) the discount rate.

Suggested Citation

  • Wen, M. & Li, R. & Salling, K.B., 2016. "Optimization of preventive condition-based tamping for railway tracks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 455-465.
  • Handle: RePEc:eee:ejores:v:252:y:2016:i:2:p:455-465
    DOI: 10.1016/j.ejor.2016.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716000539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vale, Cecília & M. Lurdes, Simões, 2013. "Stochastic model for the geometrical rail track degradation process in the Portuguese railway Northern Line," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 91-98.
    2. Arjen Zoeteman, 2006. "Asset maintenance management: state of the art in the European railways," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 2(2/3), pages 171-186.
    3. Chu, James C. & Chen, Yin-Jay, 2012. "Optimal threshold-based network-level transportation infrastructure life-cycle management with heterogeneous maintenance actions," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1123-1143.
    4. Harvey M. Wagner & Richard J. Giglio & R. George Glaser, 1964. "Preventive Maintenance Scheduling by Mathematical Programming," Management Science, INFORMS, vol. 10(2), pages 316-334, January.
    5. Higgins, A. & Kozan, E. & Ferreira, L., 1996. "Optimal scheduling of trains on a single line track," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 147-161, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Pour, Shahrzad & Drake, John H. & Ejlertsen, Lena Secher & Rasmussen, Kourosh Marjani & Burke, Edmund K., 2018. "A hybrid Constraint Programming/Mixed Integer Programming framework for the preventive signaling maintenance crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 269(1), pages 341-352.
    2. Mohammadi, Reza & He, Qing & Karwan, Mark, 2021. "Data-driven robust strategies for joint optimization of rail renewal and maintenance planning," Omega, Elsevier, vol. 103(C).
    3. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Wang, Jiaxi, 2024. "Maintenance scheduling at high-speed train depots: An optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Tomas Lidén, 2020. "Coordinating maintenance windows and train traffic: a case study," Public Transport, Springer, vol. 12(2), pages 261-298, June.
    6. Alice Consilvio & Angela Febbraro & Rossella Meo & Nicola Sacco, 2019. "Risk-based optimal scheduling of maintenance activities in a railway network," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 435-465, December.
    7. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Limsawasd, Charinee & Athigakunagorn, Nathee & Khathawatcharakun, Phattadon & Boonmee, Atiwat, 2022. "Skip-Stop Strategy Patterns optimization to enhance mass transit operation under physical distancing policy due to COVID-19 pandemic outbreak," Transport Policy, Elsevier, vol. 126(C), pages 225-238.
    2. Gianmarco Garrisi & Cristina Cervelló-Pastor, 2019. "Train-Scheduling Optimization Model for Railway Networks with Multiplatform Stations," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    3. Li, Feng & Sheu, Jiuh-Biing & Gao, Zi-You, 2014. "Deadlock analysis, prevention and train optimal travel mechanism in single-track railway system," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 385-414.
    4. Chang, Yu-Hern & Yeh, Chung-Hsing & Shen, Ching-Cheng, 2000. "A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 91-106, February.
    5. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    6. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    7. Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.
    8. Aliakbari, Mina & Geunes, Joseph & Ghahari, Amir & Prince, Mike, 2024. "Freight railcar-to-train assignment and departure scheduling in a railyard," European Journal of Operational Research, Elsevier, vol. 314(3), pages 950-962.
    9. Lesel, J. & Bourdon, D. & Claisse, G. & Debay, P. & Robyns, B., 2017. "Real time electrical power estimation for the energy management of automatic metro lines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 3-20.
    10. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    11. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    12. George Vairaktarakis & Joseph G. Szmerekovsky & Jiayan Xu, 2016. "Level workforce planning for multistage transfer lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(7), pages 577-590, October.
    13. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    14. Li, Feng & Gao, Ziyou & Wang, David Z.W. & Liu, Ronghui & Tang, Tao & Wu, Jianjun & Yang, Lixing, 2017. "A subjective capacity evaluation model for single-track railway system with δ-balanced traffic and λ-tolerance level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 43-66.
    15. Masoud Yaghini & Mohammadreza Sarmadi & Nariman Nikoo & Mohsen Momeni, 2014. "Capacity Consumption Analysis Using Heuristic Solution Method for Under Construction Railway Routes," Networks and Spatial Economics, Springer, vol. 14(3), pages 317-333, December.
    16. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    17. Chu, James C. & Huang, Kai-Hsiang, 2018. "Mathematical programming framework for modeling and comparing network-level pavement maintenance strategies," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 1-25.
    18. Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
    19. Mina Aliakbari & Joseph Geunes, 2022. "Multiple Train Repositioning Operations in a Railyard Network," SN Operations Research Forum, Springer, vol. 3(4), pages 1-31, December.
    20. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:252:y:2016:i:2:p:455-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.