IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i2p309-325.html
   My bibliography  Save this article

Optimal design of accelerated degradation tests based on Wiener process models

Author

Listed:
  • Heonsang Lim
  • Bong-Jin Yum

Abstract

Optimal accelerated degradation test (ADT) plans are developed assuming that the constant-stress loading method is employed and the degradation characteristic follows a Wiener process. Unlike the previous works on planning ADTs based on stochastic process models, this article determines the test stress levels and the proportion of test units allocated to each stress level such that the asymptotic variance of the maximum-likelihood estimator of the q th quantile of the lifetime distribution at the use condition is minimized. In addition, compromise plans are also developed for checking the validity of the relationship between the model parameters and the stress variable. Finally, using an example, sensitivity analysis procedures are presented for evaluating the robustness of optimal and compromise plans against the uncertainty in the pre-estimated parameter value, and the importance of optimally determining test stress levels and the proportion of units allocated to each stress level are illustrated.

Suggested Citation

  • Heonsang Lim & Bong-Jin Yum, 2011. "Optimal design of accelerated degradation tests based on Wiener process models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 309-325, September.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:2:p:309-325
    DOI: 10.1080/02664760903406488
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664760903406488
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903406488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    4. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    5. Wang, Han & Zhao, Yu & Ma, Xiaobing & Wang, Hongyu, 2017. "Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 45-54.
    6. Liu, Zhe & Li, Xiaoyang & Kang, Rui, 2022. "Uncertain differential equation based accelerated degradation modeling," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. I‐Chen Lee & Sheng‐Tsaing Tseng & Yili Hong, 2020. "Global planning of accelerated degradation tests based on exponential dispersion degradation models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 469-483, September.
    8. Ma, Zhonghai & Wang, Shaoping & Ruiz, Cesar & Zhang, Chao & Liao, Haitao & Pohl, Edward, 2020. "Reliability estimation from two types of accelerated testing data considering measurement error," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Yong Soo Kim & Si-Il Sung, 2017. "Practical lifetime estimation strategy based on partially step-stress-accelerated degradation tests," Journal of Risk and Reliability, , vol. 231(5), pages 605-614, October.
    10. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Hung‐Ping Tung & Sheng‐Tsaing Tseng, 2019. "Planning gamma accelerated degradation tests with two accelerating variables," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 439-447, August.
    12. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    13. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Wu, Ji-Peng & Kang, Rui & Li, Xiao-Yang, 2020. "Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Liu, Di & Wang, Shaoping & Zhang, Chao, 2022. "Reliability estimation from two types of accelerated testing data based on an artificial neural network supported Wiener process," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    16. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    17. Zhao, Xiujie & Chen, Piao & Lv, Shanshan & He, Zhen, 2023. "Reliability testing for product return prediction," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1349-1363.
    18. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    19. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:2:p:309-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.