IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1105-1110.html
   My bibliography  Save this article

Design and implementation of an air-powered motorcycles

Author

Listed:
  • Shen, Yu-Ta
  • Hwang, Yean-Ren

Abstract

Currently in Taiwan, there are more than 13 million motorcycles, mostly driven by internal combustion engines, and the pollutants, carbon monoxide (CO) and unburnt hydrocarbons (HC), generated by motorcycle are responsible for more than 10% of the air pollutants released to the atmosphere. The studies show that the internal combustion engines of motorcycles may generate up to two times more pollutants than those of automobiles. In order to improve the air pollution condition and eliminate the pollutants exhausting, this paper presents a new idea of using compressed air as the power sources for motorcycles. Instead of an internal combustion engine, this motorcycle is equipped with an air motor, which transforms the energy of the compressed air into mechanical motion energy. A prototype is built with a fuzzy logic speed controller and tested on the real road. The experiment data shows that the speed error is within 1Â km/h and the efficiency is above 70% for this system when the speed is over 20Â km/h.

Suggested Citation

  • Shen, Yu-Ta & Hwang, Yean-Ren, 2009. "Design and implementation of an air-powered motorcycles," Applied Energy, Elsevier, vol. 86(7-8), pages 1105-1110, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1105-1110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00159-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheu, Kuen-Bao, 2007. "Analysis and evaluation of hybrid scooter transmission systems," Applied Energy, Elsevier, vol. 84(12), pages 1289-1304, December.
    2. David Huang, K. & Tzeng, Sheng-Chung, 2004. "A new parallel-type hybrid electric-vehicle," Applied Energy, Elsevier, vol. 79(1), pages 51-64, September.
    3. Huang, K. David & Tzeng, Sheng-Chung, 2005. "Development of a hybrid pneumatic-power vehicle," Applied Energy, Elsevier, vol. 80(1), pages 47-59, January.
    4. Sheu, Kuen-Bao & Hsu, Tsung-Hua, 2006. "Design and implementation of a novel hybrid-electric-motorcycle transmission," Applied Energy, Elsevier, vol. 83(9), pages 959-974, September.
    5. Huang, K. David & Tzeng, Sheng-Chung & Ma, Wei-Ping & Chang, Wei-Chuan, 2005. "Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine," Applied Energy, Elsevier, vol. 82(2), pages 117-132, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung, Yi-Hsuan & Tung, Yu-Ming & Li, Hong-Wei, 2014. "A real-time model of an automotive air propulsion system," Applied Energy, Elsevier, vol. 129(C), pages 287-298.
    2. Hsu, Yuan-Yong & Lu, Shao-Yuan, 2010. "Design and implementation of a hybrid electric motorcycle management system," Applied Energy, Elsevier, vol. 87(11), pages 3546-3551, November.
    3. Dein Shaw & Jyun-Jhe Yu & Cheng Chieh, 2013. "Design of a Hydraulic Motor System Driven by Compressed Air," Energies, MDPI, vol. 6(7), pages 1-18, June.
    4. Jia Liang & Baofeng Yao & Yonghong Xu & Hongguang Zhang & Fubin Yang & Anren Yang & Yan Wang & Yuting Wu, 2023. "Experimental Research on Performance Comparison of Compressed Air Engine under Different Operation Modes," Energies, MDPI, vol. 16(3), pages 1-17, January.
    5. Zhi, Ruiping & Lei, Biao & Zhang, Cancan & Ji, Weining & Wu, Yuting, 2021. "Experimental study of single screw expander with different oil-gas separators in compressed air powered system," Energy, Elsevier, vol. 235(C).
    6. Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
    7. Marvania, Devang & Subudhi, Sudhakar, 2017. "A comprehensive review on compressed air powered engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1119-1130.
    8. Shi, Yan & Wu, Tiecheng & Cai, Maolin & Wang, Yixuan & Xu, Weiqing, 2016. "Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle," Applied Energy, Elsevier, vol. 171(C), pages 77-85.
    9. Chun-Hsin Chang & Hsuan-Yung Chang & Yi-Hsuan Hung & Chien-Hsun Wu & Ji-Jia Xu, 2020. "System Designs and Experimental Assessment of a Seven-Mode Vehicle-Oriented Hybrid Powertrain Platform," Energies, MDPI, vol. 13(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Yung Huang & Cheng-Kang Hu & Chih-Jie Yu & Cheng-Kuo Sung, 2013. "Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine," Energies, MDPI, vol. 6(3), pages 1-15, March.
    2. Hsu, Yuan-Yong & Lu, Shao-Yuan, 2010. "Design and implementation of a hybrid electric motorcycle management system," Applied Energy, Elsevier, vol. 87(11), pages 3546-3551, November.
    3. Marvania, Devang & Subudhi, Sudhakar, 2017. "A comprehensive review on compressed air powered engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1119-1130.
    4. Hung, Yi-Hsuan & Tung, Yu-Ming & Li, Hong-Wei, 2014. "A real-time model of an automotive air propulsion system," Applied Energy, Elsevier, vol. 129(C), pages 287-298.
    5. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    6. Liu, Chi-Min & You, Jhih-Jie & Sung, Cheng-Kuo & Huang, Chih-Yung, 2015. "Modified intake and exhaust system for piston-type compressed air engines," Energy, Elsevier, vol. 90(P1), pages 516-524.
    7. Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
    8. Chun-Hsin Chang & Hsuan-Yung Chang & Yi-Hsuan Hung & Chien-Hsun Wu & Ji-Jia Xu, 2020. "System Designs and Experimental Assessment of a Seven-Mode Vehicle-Oriented Hybrid Powertrain Platform," Energies, MDPI, vol. 13(8), pages 1-20, April.
    9. Walker, Paul D. & Roser, Holger M., 2015. "Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers," Applied Energy, Elsevier, vol. 146(C), pages 279-287.
    10. David Huang, K. & Quang, Khong Vu & Tseng, Kuo-Tung, 2009. "Study of the effect of contraction of cross-sectional area on flow energy merger in hybrid pneumatic power system," Applied Energy, Elsevier, vol. 86(10), pages 2171-2182, October.
    11. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    12. Yean-Ren Hwang & Shih-Yao Huang, 2013. "System Identification and Integration Design of an Air/Electric Motor," Energies, MDPI, vol. 6(2), pages 1-13, February.
    13. Shi, Dehua & Pisu, Pierluigi & Chen, Long & Wang, Shaohua & Wang, Renguang, 2016. "Control design and fuel economy investigation of power split HEV with energy regeneration of suspension," Applied Energy, Elsevier, vol. 182(C), pages 576-589.
    14. Dimitrova, Zlatina & Maréchal, François, 2015. "Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization," Applied Energy, Elsevier, vol. 151(C), pages 168-177.
    15. Sheu, Kuen-Bao, 2007. "Analysis and evaluation of hybrid scooter transmission systems," Applied Energy, Elsevier, vol. 84(12), pages 1289-1304, December.
    16. Dimitrova, Zlatina & Lourdais, Pierre & Maréchal, François, 2015. "Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain," Energy, Elsevier, vol. 86(C), pages 574-588.
    17. Chung, Cheng-Ta & Hung, Yi-Hsuan, 2015. "Performance and energy management of a novel full hybrid electric powertrain system," Energy, Elsevier, vol. 89(C), pages 626-636.
    18. Cipek, Mihael & Pavković, Danijel & Petrić, Joško, 2013. "A control-oriented simulation model of a power-split hybrid electric vehicle," Applied Energy, Elsevier, vol. 101(C), pages 121-133.
    19. Shabashevich, A. & Richards, N. & Hwang, J. & Erickson, P.A., 2015. "Analysis of powertrain design on effective waste heat recovery from conventional and hybrid electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 754-761.
    20. Yide Liu & Ivan Ka Wai Lai, 2020. "The Effects of Environmental Policy and the Perception of Electric Motorcycles on the Acceptance of Electric Motorcycles: An Empirical Study in Macau," SAGE Open, , vol. 10(1), pages 21582440198, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1105-1110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.