IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1312-d1047580.html
   My bibliography  Save this article

Experimental Research on Performance Comparison of Compressed Air Engine under Different Operation Modes

Author

Listed:
  • Jia Liang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

  • Baofeng Yao

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

  • Yonghong Xu

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

  • Hongguang Zhang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

  • Fubin Yang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

  • Anren Yang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

  • Yan Wang

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

  • Yuting Wu

    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of MOE, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China)

Abstract

An air-powered vehicle is a low-cost method to achieve low-pollution transportation, and compressed air engines (CAE) have become a research hotspot for their compact structure, low consumption, and wide working conditions. In this study, a pneumatic motor (PM) test bench is built and tested under different inlet pressures, operation modes, and three driving cycles. On the basis of the data obtained by sensors, power output, compressed air consumption rate, and efficiency are calculated to evaluate the pneumatic motor performances. The results show that with an increase in rotation speed, the output power and efficiency first increase and then decrease, and the compression air consumption rate decreases. With an increase in torque, the rotation speed decreases, and the power output and efficiency first increase and then decrease. With an increase in mass flow rate, the torque increases, the power output and efficiency first increase and then decrease. The pneumatic motor achieves the best performance under a rotation speed of 800–1200 rpm, where power output, efficiency, and compressed air consumption rates are 1498 W, 13.6%, and 10 J/g, respectively. The pneumatic motor achieves the best power output and efficiency under the UDDS driving cycle.

Suggested Citation

  • Jia Liang & Baofeng Yao & Yonghong Xu & Hongguang Zhang & Fubin Yang & Anren Yang & Yan Wang & Yuting Wu, 2023. "Experimental Research on Performance Comparison of Compressed Air Engine under Different Operation Modes," Energies, MDPI, vol. 16(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1312-:d:1047580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi, Tong & Ma, Fei & Jin, Chun & Huang, Yanjun, 2018. "A novel coupled hydro-pneumatic energy storage system for hybrid mining trucks," Energy, Elsevier, vol. 143(C), pages 704-718.
    2. Dimitrova, Zlatina & Maréchal, François, 2015. "Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization," Applied Energy, Elsevier, vol. 151(C), pages 168-177.
    3. Shen, Yu-Ta & Hwang, Yean-Ren, 2009. "Design and implementation of an air-powered motorcycles," Applied Energy, Elsevier, vol. 86(7-8), pages 1105-1110, July.
    4. Chih-Yung Huang & Cheng-Kang Hu & Chih-Jie Yu & Cheng-Kuo Sung, 2013. "Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine," Energies, MDPI, vol. 6(3), pages 1-15, March.
    5. Mariusz Rząsa & Ewelina Łukasiewicz & Dariusz Wójtowicz, 2021. "Test of a New Low-Speed Compressed Air Engine for Energy Recovery," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Liu, Chi-Min & You, Jhih-Jie & Sung, Cheng-Kuo & Huang, Chih-Yung, 2015. "Modified intake and exhaust system for piston-type compressed air engines," Energy, Elsevier, vol. 90(P1), pages 516-524.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yan & Wu, Tiecheng & Cai, Maolin & Wang, Yixuan & Xu, Weiqing, 2016. "Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle," Applied Energy, Elsevier, vol. 171(C), pages 77-85.
    2. Marvania, Devang & Subudhi, Sudhakar, 2017. "A comprehensive review on compressed air powered engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1119-1130.
    3. Liu, Chi-Min & Huang, Chin-Lun & Sung, Cheng-Kuo & Huang, Chih-Yung, 2016. "Performance analysis of a two-stage expansion air engine," Energy, Elsevier, vol. 115(P1), pages 140-148.
    4. Zhi, Ruiping & Lei, Biao & Zhang, Cancan & Ji, Weining & Wu, Yuting, 2021. "Experimental study of single screw expander with different oil-gas separators in compressed air powered system," Energy, Elsevier, vol. 235(C).
    5. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    6. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    7. Bravo, Rafael Rivelino Silva & De Negri, Victor Juliano & Oliveira, Amir Antonio Martins, 2018. "Design and analysis of a parallel hydraulic – pneumatic regenerative braking system for heavy-duty hybrid vehicles," Applied Energy, Elsevier, vol. 225(C), pages 60-77.
    8. Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
    9. Liu, Chi-Min & You, Jhih-Jie & Sung, Cheng-Kuo & Huang, Chih-Yung, 2015. "Modified intake and exhaust system for piston-type compressed air engines," Energy, Elsevier, vol. 90(P1), pages 516-524.
    10. Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
    11. Feng, Renhua & Li, Guanghua & Sun, Zhengwei & Hu, Xiulin & Deng, Banglin & Fu, Jianqin, 2023. "Potential of emission reduction of a turbo-charged non-road diesel engine without aftertreatment under multiple operating scenarios," Energy, Elsevier, vol. 263(PB).
    12. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems," Energies, MDPI, vol. 16(10), pages 1-37, May.
    13. Xu, Qiyue & Cai, Maolin & Shi, Yan, 2014. "Dynamic heat transfer model for temperature drop analysis and heat exchange system design of the air-powered engine system," Energy, Elsevier, vol. 68(C), pages 877-885.
    14. Hsu, Yuan-Yong & Lu, Shao-Yuan, 2010. "Design and implementation of a hybrid electric motorcycle management system," Applied Energy, Elsevier, vol. 87(11), pages 3546-3551, November.
    15. Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Entezariharsini, Azam, 2018. "Power fluctuation smoothing and loss reduction in grid integrated with thermal-wind-solar-storage units," Energy, Elsevier, vol. 152(C), pages 759-769.
    16. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    17. Chun-Hsin Chang & Hsuan-Yung Chang & Yi-Hsuan Hung & Chien-Hsun Wu & Ji-Jia Xu, 2020. "System Designs and Experimental Assessment of a Seven-Mode Vehicle-Oriented Hybrid Powertrain Platform," Energies, MDPI, vol. 13(8), pages 1-20, April.
    18. Nie, Chunhui & Shao, Yimin & Mechefske, Chris K. & Cheng, Min & Wang, Liming, 2021. "Power distribution method for a parallel hydraulic-pneumatic hybrid system using a piecewise function," Energy, Elsevier, vol. 233(C).
    19. Hung, Yi-Hsuan & Tung, Yu-Ming & Li, Hong-Wei, 2014. "A real-time model of an automotive air propulsion system," Applied Energy, Elsevier, vol. 129(C), pages 287-298.
    20. Dein Shaw & Jyun-Jhe Yu & Cheng Chieh, 2013. "Design of a Hydraulic Motor System Driven by Compressed Air," Energies, MDPI, vol. 6(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1312-:d:1047580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.