Modified intake and exhaust system for piston-type compressed air engines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.07.085
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Qiyue & Cai, Maolin & Shi, Yan, 2014. "Dynamic heat transfer model for temperature drop analysis and heat exchange system design of the air-powered engine system," Energy, Elsevier, vol. 68(C), pages 877-885.
- Chih-Yung Huang & Cheng-Kang Hu & Chih-Jie Yu & Cheng-Kuo Sung, 2013. "Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine," Energies, MDPI, vol. 6(3), pages 1-15, March.
- Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
- Huang, K. David & Tzeng, Sheng-Chung & Ma, Wei-Ping & Chang, Wei-Chuan, 2005. "Hybrid pneumatic-power system which recycles exhaust gas of an internal-combustion engine," Applied Energy, Elsevier, vol. 82(2), pages 117-132, October.
- Fazeli, Amir & Khajepour, Amir & Devaud, Cecile, 2011. "A novel compression strategy for air hybrid engines," Applied Energy, Elsevier, vol. 88(9), pages 2955-2966.
- Huang, K. David & Tzeng, Sheng-Chung, 2005. "Development of a hybrid pneumatic-power vehicle," Applied Energy, Elsevier, vol. 80(1), pages 47-59, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jia Liang & Baofeng Yao & Yonghong Xu & Hongguang Zhang & Fubin Yang & Anren Yang & Yan Wang & Yuting Wu, 2023. "Experimental Research on Performance Comparison of Compressed Air Engine under Different Operation Modes," Energies, MDPI, vol. 16(3), pages 1-17, January.
- Xu, Yonghong & Zhang, Hongguang & Yang, Fubin & Tong, Liang & Yan, Dong & Yang, Yifan & Wang, Yan & Wu, Yuting, 2021. "Experimental investigation of pneumatic motor for transport application," Renewable Energy, Elsevier, vol. 179(C), pages 517-527.
- Liu, Chi-Min & Huang, Chin-Lun & Sung, Cheng-Kuo & Huang, Chih-Yung, 2016. "Performance analysis of a two-stage expansion air engine," Energy, Elsevier, vol. 115(P1), pages 140-148.
- Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
- Feng, Renhua & Li, Guanghua & Sun, Zhengwei & Hu, Xiulin & Deng, Banglin & Fu, Jianqin, 2023. "Potential of emission reduction of a turbo-charged non-road diesel engine without aftertreatment under multiple operating scenarios," Energy, Elsevier, vol. 263(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marvania, Devang & Subudhi, Sudhakar, 2017. "A comprehensive review on compressed air powered engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1119-1130.
- Dimitrova, Zlatina & Maréchal, François, 2015. "Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization," Applied Energy, Elsevier, vol. 151(C), pages 168-177.
- Hung, Yi-Hsuan & Tung, Yu-Ming & Li, Hong-Wei, 2014. "A real-time model of an automotive air propulsion system," Applied Energy, Elsevier, vol. 129(C), pages 287-298.
- Bravo, Rafael Rivelino Silva & De Negri, Victor Juliano & Oliveira, Amir Antonio Martins, 2018. "Design and analysis of a parallel hydraulic – pneumatic regenerative braking system for heavy-duty hybrid vehicles," Applied Energy, Elsevier, vol. 225(C), pages 60-77.
- Liu, Chi-Min & Huang, Chin-Lun & Sung, Cheng-Kuo & Huang, Chih-Yung, 2016. "Performance analysis of a two-stage expansion air engine," Energy, Elsevier, vol. 115(P1), pages 140-148.
- Shi, Yan & Wu, Tiecheng & Cai, Maolin & Wang, Yixuan & Xu, Weiqing, 2016. "Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle," Applied Energy, Elsevier, vol. 171(C), pages 77-85.
- Chih-Yung Huang & Cheng-Kang Hu & Chih-Jie Yu & Cheng-Kuo Sung, 2013. "Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine," Energies, MDPI, vol. 6(3), pages 1-15, March.
- Shen, Yu-Ta & Hwang, Yean-Ren, 2009. "Design and implementation of an air-powered motorcycles," Applied Energy, Elsevier, vol. 86(7-8), pages 1105-1110, July.
- Dimitrova, Zlatina & Lourdais, Pierre & Maréchal, François, 2015. "Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain," Energy, Elsevier, vol. 86(C), pages 574-588.
- Mariusz Rząsa & Ewelina Łukasiewicz & Dariusz Wójtowicz, 2021. "Test of a New Low-Speed Compressed Air Engine for Energy Recovery," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Zhi, Ruiping & Lei, Biao & Zhang, Cancan & Ji, Weining & Wu, Yuting, 2021. "Experimental study of single screw expander with different oil-gas separators in compressed air powered system," Energy, Elsevier, vol. 235(C).
- Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
- Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
- Chun-Hsin Chang & Hsuan-Yung Chang & Yi-Hsuan Hung & Chien-Hsun Wu & Ji-Jia Xu, 2020. "System Designs and Experimental Assessment of a Seven-Mode Vehicle-Oriented Hybrid Powertrain Platform," Energies, MDPI, vol. 13(8), pages 1-20, April.
- David Huang, K. & Quang, Khong Vu & Tseng, Kuo-Tung, 2009. "Study of the effect of contraction of cross-sectional area on flow energy merger in hybrid pneumatic power system," Applied Energy, Elsevier, vol. 86(10), pages 2171-2182, October.
- Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
- Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
- Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
- Yean-Ren Hwang & Shih-Yao Huang, 2013. "System Identification and Integration Design of an Air/Electric Motor," Energies, MDPI, vol. 6(2), pages 1-13, February.
- Marcin Kopiczko & Jaroslaw Jaworski, 2021. "Characteristics of the Parameters of Lithium Iron Phosphate Energy Storage in the Context of their Usefulness in the Management of Distribution Grid," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 817-826.
More about this item
Keywords
Rotary intake and exhaust system; Compressed air engine; Piston-type engine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:516-524. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.