IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v173y2016icp184-196.html
   My bibliography  Save this article

Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain

Author

Listed:
  • Hung, Yi-Hsuan
  • Tung, Yu-Ming
  • Chang, Chun-Hsin

Abstract

This study designed an efficient, easily implementable online optimal control strategy for three-power-source hybrid electric powertrains. The energy improvement of optimal energy management and integrated optimal energy management/mode switch timing relative to the energy consumption in rule-based control was evaluated. First, a control-oriented vehicle model with seven subsystems was developed. For achieving rule-based control, the torque distribution among the engine, motor, and generator was designed according to performance maps of power sources. To conduct power allocation of three sources, two power-split ratios were obtained. Furthermore, for switching between three operation modes (hybrid, electric vehicle, and range extension modes), two hysteresis zones based on the required power and battery state-of-charge were used with four designed variables (boundaries). A global search method was used for the optimization. A cost function with a physical-constraint penalty was used to maximize the travel distance. A simulation performed using nested-structure for-loop programs showed that the mileage extension (energy improvement) for the optimal energy management and integrated optimal energy management/mode switch timing relative to the mileage in rule-based control for two driving cycles, NEDC and FTP-75, were [26.32%, 30.52%] and [17.22%, 20.68%], respectively. The improvements of CO2 reduction were [26.34%, 27.10%] and [23.47%, 24.12%], respectively, thus proving that this study significantly reduced energy consumption and pollutant emission by employing an easily designed control strategy. Online parameter tuning and implementation of optimal energy management in a real vehicle will be conducted in the future.

Suggested Citation

  • Hung, Yi-Hsuan & Tung, Yu-Ming & Chang, Chun-Hsin, 2016. "Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain," Applied Energy, Elsevier, vol. 173(C), pages 184-196.
  • Handle: RePEc:eee:appene:v:173:y:2016:i:c:p:184-196
    DOI: 10.1016/j.apenergy.2016.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916304767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2012. "An integrated optimization approach for a hybrid energy system in electric vehicles," Applied Energy, Elsevier, vol. 98(C), pages 479-490.
    2. Sheu, Kuen-Bao & Hsu, Tsung-Hua, 2006. "Design and implementation of a novel hybrid-electric-motorcycle transmission," Applied Energy, Elsevier, vol. 83(9), pages 959-974, September.
    3. Chung, Cheng-Ta & Hung, Yi-Hsuan, 2015. "Performance and energy management of a novel full hybrid electric powertrain system," Energy, Elsevier, vol. 89(C), pages 626-636.
    4. Chen, Syuan-Yi & Hung, Yi-Hsuan & Wu, Chien-Hsun & Huang, Siang-Ting, 2015. "Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization," Applied Energy, Elsevier, vol. 160(C), pages 132-145.
    5. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    6. Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
    7. Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
    8. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    9. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    2. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    3. Nie, Chunhui & Shao, Yimin & Mechefske, Chris K. & Cheng, Min & Wang, Liming, 2021. "Power distribution method for a parallel hydraulic-pneumatic hybrid system using a piecewise function," Energy, Elsevier, vol. 233(C).
    4. Jianyun, Zhu & Li, Chen & Lijuan, Xia & Bin, Wang, 2019. "Bi-objective optimal design of plug-in hybrid electric propulsion system for ships," Energy, Elsevier, vol. 177(C), pages 247-261.
    5. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
    6. Kegang Zhao & Jinghao Bei & Yanwei Liu & Zhihao Liang, 2019. "Development of Global Optimization Algorithm for Series-Parallel PHEV Energy Management Strategy Based on Radau Pseudospectral Knotting Method," Energies, MDPI, vol. 12(17), pages 1-23, August.
    7. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    8. Chen, Syuan-Yi & Wu, Chien-Hsun & Hung, Yi-Hsuan & Chung, Cheng-Ta, 2018. "Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization," Energy, Elsevier, vol. 160(C), pages 154-170.
    9. Feiyan Qin & Guoqing Xu & Yue Hu & Kun Xu & Weimin Li, 2017. "Stochastic Optimal Control of Parallel Hybrid Electric Vehicles," Energies, MDPI, vol. 10(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Syuan-Yi & Hung, Yi-Hsuan & Wu, Chien-Hsun & Huang, Siang-Ting, 2015. "Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization," Applied Energy, Elsevier, vol. 160(C), pages 132-145.
    2. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    3. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    4. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2015. "A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs," Applied Energy, Elsevier, vol. 139(C), pages 260-271.
    5. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    6. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2014. "Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 134(C), pages 573-588.
    7. Chen, Zheng & Xia, Bing & You, Chenwen & Mi, Chunting Chris, 2015. "A novel energy management method for series plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 172-179.
    8. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    9. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    10. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    11. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    12. Chaofeng Pan & Yanyan Liang & Long Chen & Liao Chen, 2019. "Optimal Control for Hybrid Energy Storage Electric Vehicle to Achieve Energy Saving Using Dynamic Programming Approach," Energies, MDPI, vol. 12(4), pages 1-19, February.
    13. Hsiu-Ying Hwang & Jia-Shiun Chen, 2020. "Optimized Fuel Economy Control of Power-Split Hybrid Electric Vehicle with Particle Swarm Optimization," Energies, MDPI, vol. 13(9), pages 1-18, May.
    14. Tian, He & Lu, Ziwang & Wang, Xu & Zhang, Xinlong & Huang, Yong & Tian, Guangyu, 2016. "A length ratio based neural network energy management strategy for online control of plug-in hybrid electric city bus," Applied Energy, Elsevier, vol. 177(C), pages 71-80.
    15. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    16. Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
    17. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    18. Chen, Syuan-Yi & Wu, Chien-Hsun & Hung, Yi-Hsuan & Chung, Cheng-Ta, 2018. "Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization," Energy, Elsevier, vol. 160(C), pages 154-170.
    19. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    20. Wang, Yaxin & Lou, Diming & Xu, Ning & Fang, Liang & Tan, Piqiang, 2021. "Energy management and emission control for range extended electric vehicles," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:184-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.