Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.03.034
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arabkoohsar, A. & Machado, L. & Farzaneh-Gord, M. & Koury, R.N.N., 2015. "Thermo-economic analysis and sizing of a PV plant equipped with a compressed air energy storage system," Renewable Energy, Elsevier, vol. 83(C), pages 491-509.
- Dimitrova, Zlatina & Maréchal, François, 2015. "Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization," Applied Energy, Elsevier, vol. 151(C), pages 168-177.
- de Bosio, Federico & Verda, Vittorio, 2015. "Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market," Applied Energy, Elsevier, vol. 152(C), pages 173-182.
- Shen, Yu-Ta & Hwang, Yean-Ren, 2009. "Design and implementation of an air-powered motorcycles," Applied Energy, Elsevier, vol. 86(7-8), pages 1105-1110, July.
- Chih-Yung Huang & Cheng-Kang Hu & Chih-Jie Yu & Cheng-Kuo Sung, 2013. "Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine," Energies, MDPI, vol. 6(3), pages 1-15, March.
- Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
- Dimitrova, Zlatina & Lourdais, Pierre & Maréchal, François, 2015. "Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain," Energy, Elsevier, vol. 86(C), pages 574-588.
- Dein Shaw & Jyun-Jhe Yu & Cheng Chieh, 2013. "Design of a Hydraulic Motor System Driven by Compressed Air," Energies, MDPI, vol. 6(7), pages 1-18, June.
- Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
- Wolf, Daniel & Budt, Marcus, 2014. "LTA-CAES – A low-temperature approach to Adiabatic Compressed Air Energy Storage," Applied Energy, Elsevier, vol. 125(C), pages 158-164.
- Pimm, Andrew J. & Garvey, Seamus D. & de Jong, Maxim, 2014. "Design and testing of Energy Bags for underwater compressed air energy storage," Energy, Elsevier, vol. 66(C), pages 496-508.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
- Pugi, L. & Pagliai, M. & Nocentini, A. & Lutzemberger, G. & Pretto, A., 2017. "Design of a hydraulic servo-actuation fed by a regenerative braking system," Applied Energy, Elsevier, vol. 187(C), pages 96-115.
- Yonghong Xu & Xin Wang & Hongguang Zhang & Fubin Yang & Jia Liang & Hailong Yang & Kai Niu & Zhuxian Liu & Yan Wang & Yuting Wu, 2022. "Experimental Investigation of the Output Performance of Compressed-Air-Powered Vehicles with a Pneumatic Motor," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
- Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
- He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
- Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
- Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
- Yeming Zhang & Ke Li & Geng Wang & Jingcheng Liu & Maolin Cai, 2019. "Nonlinear Model Establishment and Experimental Verification of a Pneumatic Rotary Actuator Position Servo System," Energies, MDPI, vol. 12(6), pages 1-24, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
- Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
- Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
- Jia Liang & Baofeng Yao & Yonghong Xu & Hongguang Zhang & Fubin Yang & Anren Yang & Yan Wang & Yuting Wu, 2023. "Experimental Research on Performance Comparison of Compressed Air Engine under Different Operation Modes," Energies, MDPI, vol. 16(3), pages 1-17, January.
- Arabkoohsar, Ahmad & Rahrabi, Hamid Reza & Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2020. "Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system," Energy, Elsevier, vol. 197(C).
- Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
- Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
- He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
- Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
- Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
- Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
- Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
- Marvania, Devang & Subudhi, Sudhakar, 2017. "A comprehensive review on compressed air powered engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1119-1130.
- Marcin Jankowski & Anna Pałac & Krzysztof Sornek & Wojciech Goryl & Maciej Żołądek & Maksymilian Homa & Mariusz Filipowicz, 2024. "Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review," Energies, MDPI, vol. 17(9), pages 1-46, April.
- Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.
- Arabkoohsar, A. & Dremark-Larsen, M. & Lorentzen, R. & Andresen, G.B., 2017. "Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity," Applied Energy, Elsevier, vol. 205(C), pages 602-614.
- Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
- Zhi, Ruiping & Lei, Biao & Zhang, Cancan & Ji, Weining & Wu, Yuting, 2021. "Experimental study of single screw expander with different oil-gas separators in compressed air powered system," Energy, Elsevier, vol. 235(C).
- Luo, Xing & Wang, Jihong & Krupke, Christopher & Wang, Yue & Sheng, Yong & Li, Jian & Xu, Yujie & Wang, Dan & Miao, Shihong & Chen, Haisheng, 2016. "Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage," Applied Energy, Elsevier, vol. 162(C), pages 589-600.
More about this item
Keywords
Sustainable-energy vehicle; Air-driven hydraulic transformer; Working characteristic; Power; Efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:77-85. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.