Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.10.135
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2012. "Steam injection experiments in a microturbine – A thermodynamic performance analysis," Applied Energy, Elsevier, vol. 97(C), pages 569-576.
- Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
- Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
- Pasini, Gianluca & Lutzemberger, Giovanni & Frigo, Stefano & Marelli, Silvia & Ceraolo, Massimo & Gentili, Roberto & Capobianco, Massimo, 2016. "Evaluation of an electric turbo compound system for SI engines: A numerical approach," Applied Energy, Elsevier, vol. 162(C), pages 527-540.
- Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
- Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
- Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
- Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
- Kökkülünk, Görkem & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Gonca, Güven & Boru, Barış, 2014. "Theoretical and experimental investigation of steam injected diesel engine with EGR," Energy, Elsevier, vol. 74(C), pages 331-339.
- Fu, Jianqin & Liu, Jingping & Wang, Yong & Deng, Banglin & Yang, Yanping & Feng, Renhua & Yang, Jing, 2014. "A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery," Applied Energy, Elsevier, vol. 113(C), pages 248-257.
- Bermúdez, V. & Serrano, J.R. & Piqueras, P. & García-Afonso, O., 2015. "Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters," Applied Energy, Elsevier, vol. 140(C), pages 234-245.
- Lee, Jong Jun & Jeon, Mu Sung & Kim, Tong Seop, 2010. "The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application," Applied Energy, Elsevier, vol. 87(4), pages 1307-1316, April.
- Bermúdez, Vicente & Serrano, José Ramón & Piqueras, Pedro & Campos, Daniel, 2015. "Analysis of the influence of pre-DPF water injection technique on pollutants emission," Energy, Elsevier, vol. 89(C), pages 778-792.
- Adnan, R. & Masjuki, H.H. & Mahlia, T.M.I., 2012. "Performance and emission analysis of hydrogen fueled compression ignition engine with variable water injection timing," Energy, Elsevier, vol. 43(1), pages 416-426.
- Mazzucco, Andrea & Rokni, Masoud, 2014. "Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification," Energy, Elsevier, vol. 76(C), pages 114-129.
- Jonsson, Maria & Yan, Jinyue, 2005. "Humidified gas turbines—a review of proposed and implemented cycles," Energy, Elsevier, vol. 30(7), pages 1013-1078.
- Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
- Wu, Zhi-Jun & Yu, Xiao & Fu, Le-Zhong & Deng, Jun & Hu, Zong-Jie & Li, Li-Guang, 2014. "A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery," Energy, Elsevier, vol. 70(C), pages 110-120.
- Shu, Gequn & Liang, Youcai & Wei, Haiqiao & Tian, Hua & Zhao, Jian & Liu, Lina, 2013. "A review of waste heat recovery on two-stroke IC engine aboard ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 385-401.
- Tian, Hua & Shu, Gequn & Wei, Haiqiao & Liang, Xingyu & Liu, Lina, 2012. "Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)," Energy, Elsevier, vol. 47(1), pages 125-136.
- Bin Mamat, A.M.I. & Martinez-Botas, R.F. & Rajoo, S. & Romagnoli, A. & Petrovic, S., 2015. "Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: Experimental and computational analysis," Energy, Elsevier, vol. 90(P1), pages 218-234.
- Mamat, Aman M.I. & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2014. "Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine," Energy, Elsevier, vol. 64(C), pages 3-16.
- Conklin, James C. & Szybist, James P., 2010. "A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery," Energy, Elsevier, vol. 35(4), pages 1658-1664.
- Briggs, Ian & McCullough, Geoffrey & Spence, Stephen & Douglas, Roy, 2014. "Whole-vehicle modelling of exhaust energy recovery on a diesel-electric hybrid bus," Energy, Elsevier, vol. 65(C), pages 172-181.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Qiren & Zong, Yichen & Tan, Yong Ren & Lyu, Jie-Yao & Pan, Jianfeng & Zhou, Xinyi & Liu, Haili & He, Song & Chen, Wang & Yu, Wenbin & Yang, Wenming & Kraft, Markus, 2024. "Comparative analysis of PODE3 and PODE4 fuel additives for emission reduction and soot characteristics in compression ignition engines," Energy, Elsevier, vol. 286(C).
- Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
- Zhu, Sipeng & Sun, Ke & Bai, Shuzhan & Deng, Kangyao, 2022. "Thermodynamic and techno-economic comparisons of the steam injected turbocompounding system with conventional steam Rankine cycle systems in recovering waste heat from the marine two-stroke engine," Energy, Elsevier, vol. 245(C).
- Zhu, Qiren & Zong, Yichen & Yu, Wenbin & Yang, Wenming & Kraft, Markus, 2021. "Understanding the blending effect of polyoxymethylene dimethyl ethers as additive in a common-rail diesel engine," Applied Energy, Elsevier, vol. 300(C).
- Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
- Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
- Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
- Cózar, I.R. & Pujol, T. & Lehocky, M., 2018. "Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators," Applied Energy, Elsevier, vol. 229(C), pages 264-280.
- Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
- Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
- Zhang, Zhongbo & Wan, Weijian & Zhang, Wencan & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research of the impacts of in-cylinder steam injection and ignition timing on the performance and NO emission of a LPG engine," Energy, Elsevier, vol. 244(PB).
- Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
- Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
- Ivan Ruiz Cózar & Toni Pujol & Eduard Massaguer & Albert Massaguer & Lino Montoro & Jose Ramon González & Martí Comamala & Samir Ezzitouni, 2021. "Effects of Module Spatial Distribution on the Energy Efficiency and Electrical Output of Automotive Thermoelectric Generators," Energies, MDPI, vol. 14(8), pages 1-16, April.
- Wang, Chenfang & Liu, Shihao & Zhan, Shuming & Ou, Mengmeng & Wei, Jiangjun & Cheng, Xiaozhang & Zhuge, Weilin & Zhang, Yangjun, 2024. "Transcritical dual-loop Rankine cycle waste heat recovery system for China VI emission standards natural gas engine," Energy, Elsevier, vol. 292(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
- Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
- Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
- Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
- Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
- Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
- Zhao, Rongchao & Huang, Lei & Wang, Zhen & Zhuge, Weilin & Ding, Zhanming & Zhang, Yangjun, 2023. "Development of a novel dual-loop optimization method for the engine electric turbocompound system based on particle swarm algorithm," Energy, Elsevier, vol. 284(C).
- Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun, 2019. "Assessment of turbine performance under swirling inflow conditions," Energy, Elsevier, vol. 168(C), pages 492-504.
- Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
- Teo, A.E. & Chiong, M.S. & Yang, M. & Romagnoli, A. & Martinez-Botas, R.F. & Rajoo, S., 2019. "Performance evaluation of low-pressure turbine, turbo-compounding and air-Brayton cycle as engine waste heat recovery method," Energy, Elsevier, vol. 166(C), pages 895-907.
- Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.
- Pasini, Gianluca & Lutzemberger, Giovanni & Frigo, Stefano & Marelli, Silvia & Ceraolo, Massimo & Gentili, Roberto & Capobianco, Massimo, 2016. "Evaluation of an electric turbo compound system for SI engines: A numerical approach," Applied Energy, Elsevier, vol. 162(C), pages 527-540.
- De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
- Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
- Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
- Chen, Hao & Guo, Qi & Yang, Lu & Liu, Shenghua & Xie, Xuliang & Chen, Zhaoyang & Liu, Zengqiang, 2015. "A new six stroke single cylinder diesel engine referring Rankine cycle," Energy, Elsevier, vol. 87(C), pages 336-342.
- Mingrui Wei & Thanh Sa Nguyen & Richard Fiifi Turkson & Guanlun Guo & Jinping Liu, 2016. "The Effect of Water Injection on the Control of In-Cylinder Pressure and Enhanced Power Output in a Four-Stroke Spark-Ignition Engine," Sustainability, MDPI, vol. 8(10), pages 1-22, September.
- De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2013. "Water injection in a micro gas turbine – Assessment of the performance using a black box method," Applied Energy, Elsevier, vol. 112(C), pages 1291-1302.
- Feneley, Adam J. & Pesiridis, Apostolos & Andwari, Amin Mahmoudzadeh, 2017. "Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 959-975.
- Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
More about this item
Keywords
Internal combustion engine; Waste heat recovery; Turbocompounding; Steam injection; Thermodynamics analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:506-518. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.