Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.02.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
- Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
- Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
- Yu, Guopeng & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Liu, Lina, 2013. "Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)," Energy, Elsevier, vol. 51(C), pages 281-290.
- Shu, Gequn & Zhao, Jian & Tian, Hua & Liang, Xingyu & Wei, Haiqiao, 2012. "Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123," Energy, Elsevier, vol. 45(1), pages 806-816.
- Li, You-Rong & Wang, Jian-Ning & Du, Mei-Tang, 2012. "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Energy, Elsevier, vol. 42(1), pages 503-509.
- Conklin, James C. & Szybist, James P., 2010. "A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery," Energy, Elsevier, vol. 35(4), pages 1658-1664.
- He, Maogang & Zhang, Xinxin & Zeng, Ke & Gao, Ke, 2011. "A combined thermodynamic cycle used for waste heat recovery of internal combustion engine," Energy, Elsevier, vol. 36(12), pages 6821-6829.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
- Wang, Liang-Chen & Chang, Li-Ming & Wang, Liang-Bi & Song, Ke-Wei & Zhang, Yong-Heng & Wu, Xiang & Lin, Zhi-Min, 2014. "Analysis of the reusability of the energy of the exhaust gas from the calciner for the production of carbon," Energy, Elsevier, vol. 78(C), pages 439-450.
- Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
- Kim, SeLin & Choi, KyungWook & Lee, Kihyung & Kim, Kibum, 2016. "Evaluation of automotive waste heat recovery for various driving modes," Energy, Elsevier, vol. 106(C), pages 579-589.
- Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2015. "Effects of both blended and pure biodiesel on waste heat recovery potentiality and exhaust emissions of a small CI (compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 661-671.
- Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
- Liu, Qi & Xie, Mingke & Fu, Jianqin & Liu, Jingping & Deng, Banglin, 2021. "Cylinder steam injection (CSI) for internal combustion (IC) engine waste heat recovery (WHR) and its application on natural gas (NG) engine," Energy, Elsevier, vol. 214(C).
- Poran, Arnon & Tartakovsky, Leonid, 2015. "Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming," Energy, Elsevier, vol. 88(C), pages 506-514.
- Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
- Zhang, Zhongbo & Wan, Weijian & Zhang, Wencan & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research of the impacts of in-cylinder steam injection and ignition timing on the performance and NO emission of a LPG engine," Energy, Elsevier, vol. 244(PB).
- Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
- Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
- Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
- Mingrui Wei & Thanh Sa Nguyen & Richard Fiifi Turkson & Guanlun Guo & Jinping Liu, 2016. "The Effect of Water Injection on the Control of In-Cylinder Pressure and Enhanced Power Output in a Four-Stroke Spark-Ignition Engine," Sustainability, MDPI, vol. 8(10), pages 1-22, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2013. "Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery," Energy, Elsevier, vol. 58(C), pages 448-457.
- Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
- Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
- Yang, Kai & Zhang, Hongguang & Wang, Zhen & Zhang, Jian & Yang, Fubin & Wang, Enhua & Yao, Baofeng, 2013. "Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions," Energy, Elsevier, vol. 58(C), pages 494-510.
- Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
- Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.
- Panesar, Angad Singh, 2016. "An innovative organic Rankine cycle approach for high temperature applications," Energy, Elsevier, vol. 115(P2), pages 1436-1450.
- Kai Yang & Hongguang Zhang & Songsong Song & Fubin Yang & Hao Liu & Guangyao Zhao & Jian Zhang & Baofeng Yao, 2014. "Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC) Waste Heat Recovery System for Diesel Engines under Various Operating Conditions," Energies, MDPI, vol. 7(4), pages 1-23, April.
- Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
- Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
- Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
- Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
- Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
- Yue, Chen & Han, Dong & Pu, Wenhao & He, Weifeng, 2015. "Energetic analysis of a novel vehicle power and cooling/heating cogeneration energy system using cascade cycles," Energy, Elsevier, vol. 82(C), pages 242-255.
- Xinyu Li & Tao Liu & Lin Chen, 2018. "Thermodynamic Performance Analysis of an Improved Two-Stage Organic Rankine Cycle," Energies, MDPI, vol. 11(11), pages 1-11, October.
- Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
- Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
- Fu, Jianqin & Liu, Jingping & Xu, Zhengxin & Ren, Chengqin & Deng, Banglin, 2013. "A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery," Energy, Elsevier, vol. 55(C), pages 778-786.
- Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
- Di Battista, D. & Mauriello, M. & Cipollone, R., 2015. "Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle," Applied Energy, Elsevier, vol. 152(C), pages 109-120.
More about this item
Keywords
Internal combustion engine; Waste heat recovery; Steam injection; Intake valve close timing; Thermal efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:548-556. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.