IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221020478.html
   My bibliography  Save this article

Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings

Author

Listed:
  • Zhang, Zhongbo
  • Liu, Qin
  • Zhao, Rongchao
  • Chen, Youpeng
  • Qin, Qichao

Abstract

Turbocompounding and in-cylinder steam injection (ICSI) are both effective methods for engine waste heat utilization. The fuel savings potential obtained by the combination of the two methods is not clear. In the paper, the effects of ICSI on the performance of a turbocompound engine are investigated. Firstly, the layout of the turbocompound engine with ICSI is described. Then, the simulation model of a turbocompound diesel engine is developed and calibrated. Finally, the influences of different ICSI parameters on the performance of the turbocompound engine are studied. The results show that the gross power and fuel economy of the turbocompound engine are remarkably improved by ICSI. With optimal steam injection mass, the brake specific fuel consumption of the turbocompound engine is reduced by 3.0%–5.4% under different engine speed conditions. The performances of turbocharged turbine and power turbine are both improved. In-cylinder combustion process is improved and overall in-cylinder pressure profile is enhanced. Steam injection mass and timing have great impacts on the performance of the turbocompound engine. As steam injection mass increases, the engine fuel economy is further improved. The earlier the steam is injected, the better the engine performance will be obtained.

Suggested Citation

  • Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221020478
    DOI: 10.1016/j.energy.2021.121799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221020478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    2. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim & Cakir, Mehmet, 2015. "Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria," Energy, Elsevier, vol. 90(P1), pages 552-559.
    3. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    4. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    5. Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
    6. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Liu, Qi & Xie, Mingke & Fu, Jianqin & Liu, Jingping & Deng, Banglin, 2021. "Cylinder steam injection (CSI) for internal combustion (IC) engine waste heat recovery (WHR) and its application on natural gas (NG) engine," Energy, Elsevier, vol. 214(C).
    8. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    10. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
    11. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    12. Briggs, Ian & McCullough, Geoffrey & Spence, Stephen & Douglas, Roy, 2014. "Whole-vehicle modelling of exhaust energy recovery on a diesel-electric hybrid bus," Energy, Elsevier, vol. 65(C), pages 172-181.
    13. Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
    14. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
    15. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    16. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhongbo & Wan, Weijian & Zhang, Wencan & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research of the impacts of in-cylinder steam injection and ignition timing on the performance and NO emission of a LPG engine," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhongbo & Wan, Weijian & Zhang, Wencan & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research of the impacts of in-cylinder steam injection and ignition timing on the performance and NO emission of a LPG engine," Energy, Elsevier, vol. 244(PB).
    2. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    3. Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
    4. Liu, Qi & Xie, Mingke & Fu, Jianqin & Liu, Jingping & Deng, Banglin, 2021. "Cylinder steam injection (CSI) for internal combustion (IC) engine waste heat recovery (WHR) and its application on natural gas (NG) engine," Energy, Elsevier, vol. 214(C).
    5. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    6. Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
    7. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    8. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    9. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Zhao, Rongchao & Huang, Lei & Wang, Zhen & Zhuge, Weilin & Ding, Zhanming & Zhang, Yangjun, 2023. "Development of a novel dual-loop optimization method for the engine electric turbocompound system based on particle swarm algorithm," Energy, Elsevier, vol. 284(C).
    11. Wang, Chenfang & Liu, Shihao & Zhan, Shuming & Ou, Mengmeng & Wei, Jiangjun & Cheng, Xiaozhang & Zhuge, Weilin & Zhang, Yangjun, 2024. "Transcritical dual-loop Rankine cycle waste heat recovery system for China VI emission standards natural gas engine," Energy, Elsevier, vol. 292(C).
    12. Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun, 2019. "Assessment of turbine performance under swirling inflow conditions," Energy, Elsevier, vol. 168(C), pages 492-504.
    13. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    14. Shu, Gequn & Wang, Rui & Tian, Hua & Wang, Xuan & Li, Xiaoya & Cai, Jinwen & Xu, Zhiqiang, 2020. "Dynamic performance of the transcritical power cycle using CO2-based binary zeotropic mixtures for truck engine waste heat recovery," Energy, Elsevier, vol. 194(C).
    15. Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
    16. Teo, A.E. & Chiong, M.S. & Yang, M. & Romagnoli, A. & Martinez-Botas, R.F. & Rajoo, S., 2019. "Performance evaluation of low-pressure turbine, turbo-compounding and air-Brayton cycle as engine waste heat recovery method," Energy, Elsevier, vol. 166(C), pages 895-907.
    17. Chao Wu & Kang Song & Shaohua Li & Hui Xie, 2019. "Impact of Electrically Assisted Turbocharger on the Intake Oxygen Concentration and Its Disturbance Rejection Control for a Heavy-duty Diesel Engine," Energies, MDPI, vol. 12(15), pages 1-22, August.
    18. Zhu, Sipeng & Sun, Ke & Bai, Shuzhan & Deng, Kangyao, 2022. "Thermodynamic and techno-economic comparisons of the steam injected turbocompounding system with conventional steam Rankine cycle systems in recovering waste heat from the marine two-stroke engine," Energy, Elsevier, vol. 245(C).
    19. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    20. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221020478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.