IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp895-907.html
   My bibliography  Save this article

Performance evaluation of low-pressure turbine, turbo-compounding and air-Brayton cycle as engine waste heat recovery method

Author

Listed:
  • Teo, A.E.
  • Chiong, M.S.
  • Yang, M.
  • Romagnoli, A.
  • Martinez-Botas, R.F.
  • Rajoo, S.

Abstract

This paper presents an equivalent comparison of waste heat recovery method on an internal combustion engine using low-pressure turbine (LPT), turbo compound (TC) & air-Brayton cycle (ABC). A 5.9 L, six cylinders turbocharged diesel engine is used for this case study. All recovery methods are simulated on AVL BOOST where the engine model, turbocharger and heat exchanger are validated with experimental data. It is found that all three methods cannot work effectively without at least reducing the turbocharger turbine size to amplify the compressor surplus power. It is done by using a commercially available turbocharger turbine with smaller area over radius (A/R) volute, hence ensuring the least possible engine hardware change. In all the cases, the engine is ensured to deliver its baseline brake power. It is shown that LPT can recover the most exhaust waste heat (up to 5.40 kW), followed by TC (up to 1.75 kW) and ABC (up to 0.64 kW).

Suggested Citation

  • Teo, A.E. & Chiong, M.S. & Yang, M. & Romagnoli, A. & Martinez-Botas, R.F. & Rajoo, S., 2019. "Performance evaluation of low-pressure turbine, turbo-compounding and air-Brayton cycle as engine waste heat recovery method," Energy, Elsevier, vol. 166(C), pages 895-907.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:895-907
    DOI: 10.1016/j.energy.2018.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218320231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    2. Pasini, Gianluca & Lutzemberger, Giovanni & Frigo, Stefano & Marelli, Silvia & Ceraolo, Massimo & Gentili, Roberto & Capobianco, Massimo, 2016. "Evaluation of an electric turbo compound system for SI engines: A numerical approach," Applied Energy, Elsevier, vol. 162(C), pages 527-540.
    3. Larsen, Ulrik & Nguyen, Tuong-Van & Knudsen, Thomas & Haglind, Fredrik, 2014. "System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines," Energy, Elsevier, vol. 64(C), pages 484-494.
    4. Nguyen, Tuong-Van & Knudsen, Thomas & Larsen, Ulrik & Haglind, Fredrik, 2014. "Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications," Energy, Elsevier, vol. 71(C), pages 277-288.
    5. Gou, Xiaolong & Yang, Suwen & Xiao, Heng & Ou, Qiang, 2013. "A dynamic model for thermoelectric generator applied in waste heat recovery," Energy, Elsevier, vol. 52(C), pages 201-209.
    6. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Wang, Xiangxiang, 2014. "Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine," Energy, Elsevier, vol. 77(C), pages 489-498.
    7. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    8. Briggs, Ian & McCullough, Geoffrey & Spence, Stephen & Douglas, Roy, 2014. "Whole-vehicle modelling of exhaust energy recovery on a diesel-electric hybrid bus," Energy, Elsevier, vol. 65(C), pages 172-181.
    9. Bin Mamat, A.M.I. & Martinez-Botas, R.F. & Rajoo, S. & Romagnoli, A. & Petrovic, S., 2015. "Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: Experimental and computational analysis," Energy, Elsevier, vol. 90(P1), pages 218-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Xuan Khoa & Ocktaeck Lim, 2020. "Comparative Study of the Effective Release Energy, Residual Gas Fraction, and Emission Characteristics with Various Valve Port Diameter-Bore Ratios (VPD/B) of a Four-Stroke Spark Ignition Engine," Energies, MDPI, vol. 13(6), pages 1-18, March.
    2. Shu, Jun & Fu, Jianqin & Ren, Chengqin & Liu, Jingping & Wang, Shuqian & Feng, Sha, 2020. "Numerical investigation on flow and heat transfer processes of novel methanol cracking device for internal combustion engine exhaust heat recovery," Energy, Elsevier, vol. 195(C).
    3. Zhao, Rongchao & Huang, Lei & Wang, Zhen & Zhuge, Weilin & Ding, Zhanming & Zhang, Yangjun, 2023. "Development of a novel dual-loop optimization method for the engine electric turbocompound system based on particle swarm algorithm," Energy, Elsevier, vol. 284(C).
    4. Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
    5. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    6. Khoa, Nguyen Xuan & Quach Nhu, Y. & Lim, Ocktaeck, 2020. "Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine," Applied Energy, Elsevier, vol. 278(C).
    7. Nguyen Xuan Khoa & Ocktaeck Lim, 2021. "The Internal Residual Gas and Effective Release Energy of a Spark-Ignition Engine with Various Inlet Port–Bore Ratios and Full Load Condition," Energies, MDPI, vol. 14(13), pages 1-13, June.
    8. Zhang, Zhongjie & Peng, Qikai & Liu, Riulin & Dong, Surong & Zhou, Guangmeng & Liu, Zengyong & Zhao, Xumin & Yang, Chunhao & Wang, Zengquan & Xia, Xu, 2024. "A matching method for Twin-VGT systems under varying expansion ratios at high altitudes," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    2. Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
    3. Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun, 2019. "Assessment of turbine performance under swirling inflow conditions," Energy, Elsevier, vol. 168(C), pages 492-504.
    4. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    5. Zhao, Rongchao & Huang, Lei & Wang, Zhen & Zhuge, Weilin & Ding, Zhanming & Zhang, Yangjun, 2023. "Development of a novel dual-loop optimization method for the engine electric turbocompound system based on particle swarm algorithm," Energy, Elsevier, vol. 284(C).
    6. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    7. Matteo Repetto & Massimiliano Passalacqua & Luis Vaccaro & Mario Marchesoni & Alessandro Pini Prato, 2020. "Turbocompound Power Unit Modelling for a Supercapacitor-Based Series Hybrid Vehicle Application," Energies, MDPI, vol. 13(2), pages 1-20, January.
    8. N Shankar Ganesh & T Srinivas & G Uma Maheswari & S Mahendiran & D Manivannan, 2019. "Development of optimized energy system," Energy & Environment, , vol. 30(7), pages 1190-1205, November.
    9. Pasini, Gianluca & Lutzemberger, Giovanni & Frigo, Stefano & Marelli, Silvia & Ceraolo, Massimo & Gentili, Roberto & Capobianco, Massimo, 2016. "Evaluation of an electric turbo compound system for SI engines: A numerical approach," Applied Energy, Elsevier, vol. 162(C), pages 527-540.
    10. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    11. Chen, X. & Sun, L.N. & Du, S., 2022. "Analysis and optimization on a modified ammonia-water power cycle for more efficient power generation," Energy, Elsevier, vol. 241(C).
    12. Bin Mamat, A.M.I. & Martinez-Botas, R.F. & Rajoo, S. & Romagnoli, A. & Petrovic, S., 2015. "Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: Experimental and computational analysis," Energy, Elsevier, vol. 90(P1), pages 218-234.
    13. Mahabadipour, Hamidreza & Srinivasan, Kalyan Kumar & Krishnan, Sundar Rajan & Subramanian, Swami Nathan, 2018. "Crank angle-resolved exergy analysis of exhaust flows in a diesel engine from the perspective of exhaust waste energy recovery," Applied Energy, Elsevier, vol. 216(C), pages 31-44.
    14. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
    16. Andreasen, J.G. & Larsen, U. & Knudsen, T. & Haglind, F., 2015. "Design and optimization of a novel organic Rankine cycle with improved boiling process," Energy, Elsevier, vol. 91(C), pages 48-59.
    17. Shi, Yao & Zhang, Zhiming & Xie, Lei & Wu, Xialai & Liu, Xueqin Amy & Lu, Shan & Su, Hongye, 2022. "Modified hierarchical strategy for transient performance improvement of the ORC based waste heat recovery system," Energy, Elsevier, vol. 261(PA).
    18. Massaguer, E. & Massaguer, A. & Pujol, T. & Comamala, M. & Montoro, L. & Gonzalez, J.R., 2019. "Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system," Energy, Elsevier, vol. 179(C), pages 306-314.
    19. Zhang, Chuan & Romagnoli, Alessandro & Kim, Je Young & Azli, Anis Athirah Mohd & Rajoo, Srithar & Lindsay, Andrew, 2017. "Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts," Energy Policy, Elsevier, vol. 106(C), pages 525-535.
    20. Alessandro Benevieri & Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2021. "Series Architecture on Hybrid Electric Vehicles: A Review," Energies, MDPI, vol. 14(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:895-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.