IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp407-423.html
   My bibliography  Save this article

Characterization of two-stage turbine system under steady and pulsating flow conditions

Author

Listed:
  • Zhao, Rongchao
  • Li, Weihua
  • Zhuge, Weilin
  • Zhang, Yangjun
  • Yin, Yong
  • Wu, Yonghui

Abstract

As the development of turbocompounding and two-stage turbocharging technology, there are increasingly more two-stage turbine systems applied on vehicles. The two-stage turbine recovers waste heat from the exhaust and thus affects the engine performance significantly. However, the interaction pattern and mechanism between the two turbines have not been fully understood. The paper focuses on the characteristic of the two-stage turbine under steady and pulsating flows.

Suggested Citation

  • Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:407-423
    DOI: 10.1016/j.energy.2018.01.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    2. Rajoo, Srithar & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2012. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine," Energy, Elsevier, vol. 38(1), pages 176-189.
    3. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    4. Mamat, Aman M.I. & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2014. "Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine," Energy, Elsevier, vol. 64(C), pages 3-16.
    5. Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun & Chen, Hua & Martinez-Botas, Ricardo & Yang, Mingyang, 2017. "A one-dimensional unsteady performance model for turbocharger turbines," Energy, Elsevier, vol. 132(C), pages 341-355.
    6. Marelli, Silvia & Capobianco, Massimo, 2011. "Steady and pulsating flow efficiency of a waste-gated turbocharger radial flow turbine for automotive application," Energy, Elsevier, vol. 36(1), pages 459-465.
    7. Briggs, Ian & McCullough, Geoffrey & Spence, Stephen & Douglas, Roy, 2014. "Whole-vehicle modelling of exhaust energy recovery on a diesel-electric hybrid bus," Energy, Elsevier, vol. 65(C), pages 172-181.
    8. Galindo, J. & Fajardo, P. & Navarro, R. & García-Cuevas, L.M., 2013. "Characterization of a radial turbocharger turbine in pulsating flow by means of CFD and its application to engine modeling," Applied Energy, Elsevier, vol. 103(C), pages 116-127.
    9. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    10. Bin Mamat, A.M.I. & Martinez-Botas, R.F. & Rajoo, S. & Romagnoli, A. & Petrovic, S., 2015. "Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: Experimental and computational analysis," Energy, Elsevier, vol. 90(P1), pages 218-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Touil, Kaddour & Ghenaiet, Adel, 2019. "Simulation and analysis of vane-blade interaction in a two-stage high-pressure axial turbine," Energy, Elsevier, vol. 172(C), pages 1291-1311.
    2. Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
    3. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    4. Zhang, Zhongjie & Peng, Qikai & Liu, Riulin & Dong, Surong & Zhou, Guangmeng & Liu, Zengyong & Zhao, Xumin & Yang, Chunhao & Wang, Zengquan & Xia, Xu, 2024. "A matching method for Twin-VGT systems under varying expansion ratios at high altitudes," Energy, Elsevier, vol. 289(C).
    5. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    6. Leng, Ling & Qiu, Hongjian & Li, Xiannan & Zhong, Jie & Shi, Lei & Deng, Kangyao, 2022. "Effects on the transient energy distribution of turbocharging mode switching for marine diesel engines," Energy, Elsevier, vol. 249(C).
    7. Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Rongchao & Wen, Dayang & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2020. "Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery," Energy, Elsevier, vol. 208(C).
    2. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    3. Zhao, Rongchao & Huang, Lei & Wang, Zhen & Zhuge, Weilin & Ding, Zhanming & Zhang, Yangjun, 2023. "Development of a novel dual-loop optimization method for the engine electric turbocompound system based on particle swarm algorithm," Energy, Elsevier, vol. 284(C).
    4. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    5. Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun, 2019. "Assessment of turbine performance under swirling inflow conditions," Energy, Elsevier, vol. 168(C), pages 492-504.
    6. Ding, Zhanming & Zhuge, Weilin & Zhang, Yangjun & Chen, Hua & Martinez-Botas, Ricardo & Yang, Mingyang, 2017. "A one-dimensional unsteady performance model for turbocharger turbines," Energy, Elsevier, vol. 132(C), pages 341-355.
    7. Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
    8. Sheng Yin & Jimin Ni & Houchuan Fan & Xiuyong Shi & Rong Huang, 2022. "A Study of Evaluation Method for Turbocharger Turbine Based on Joint Operation Curve," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    9. Bahiuddin, Irfan & Mazlan, Saiful Amri & Imaduddin, Fitrian & Ubaidillah,, 2017. "A new control-oriented transient model of variable geometry turbocharger," Energy, Elsevier, vol. 125(C), pages 297-312.
    10. Teo, A.E. & Chiong, M.S. & Yang, M. & Romagnoli, A. & Martinez-Botas, R.F. & Rajoo, S., 2019. "Performance evaluation of low-pressure turbine, turbo-compounding and air-Brayton cycle as engine waste heat recovery method," Energy, Elsevier, vol. 166(C), pages 895-907.
    11. Zhu, Dengting & Zheng, Xinqian, 2018. "A new asymmetric twin-scroll turbine with two wastegates for energy improvements in diesel engines," Applied Energy, Elsevier, vol. 223(C), pages 263-272.
    12. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    13. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    14. Xue, Yingxian & Yang, Mingyang & Pan, Lei & Deng, Kangyao & Wu, Xintao & Wang, Cuicui, 2021. "Gasdynamic behaviours of a radial turbine with pulsating incoming flow," Energy, Elsevier, vol. 218(C).
    15. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    16. Pasini, Gianluca & Lutzemberger, Giovanni & Frigo, Stefano & Marelli, Silvia & Ceraolo, Massimo & Gentili, Roberto & Capobianco, Massimo, 2016. "Evaluation of an electric turbo compound system for SI engines: A numerical approach," Applied Energy, Elsevier, vol. 162(C), pages 527-540.
    17. Shu, Gequn & Wang, Rui & Tian, Hua & Wang, Xuan & Li, Xiaoya & Cai, Jinwen & Xu, Zhiqiang, 2020. "Dynamic performance of the transcritical power cycle using CO2-based binary zeotropic mixtures for truck engine waste heat recovery," Energy, Elsevier, vol. 194(C).
    18. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Dariusz Kozak & Paweł Mazuro, 2023. "Numerical Analysis of Two-Stage Turbine System for Multicylinder Engine under Pulse Flow Conditions with High Pressure-Ratio Turbine Rotor," Energies, MDPI, vol. 16(2), pages 1-46, January.
    20. Romagnoli, A. & Manivannan, A. & Rajoo, S. & Chiong, M.S. & Feneley, A. & Pesiridis, A. & Martinez-Botas, R.F., 2017. "A review of heat transfer in turbochargers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1442-1460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:407-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.