IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v115y2014icp374-383.html
   My bibliography  Save this article

Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers

Author

Listed:
  • Ksepko, Ewelina
  • Sciazko, Marek
  • Babinski, Piotr

Abstract

This paper contains the results of research work on chemical looping combustion (CLC). CLC is one of the most promising combustion technologies and has the main advantage of the production of a concentrated CO2 stream, which is obtained after water condensation without any energy penalty for CO2 separation. The objective of this work was to study the kinetics of both the reduction and oxidation reactions for the selected bi-metallic Fe2O3–CuO/Al2O3 and mono-metallic Fe2O3/TiO2 oxygen carriers. Based on our previous CLC research results, the most promising oxygen carriers were selected for the analysis. Tests were performed at isothermal conditions (600–950°C) in multiple redox cycles using a thermo-gravimetric analyzer (Netzsch STA 409 PG Luxx). For the reduction, 3% H2 in Ar was used, and for the oxidation cycle, air was used. The activation energy and the pre-exponential factor were determined, and the reaction model was selected. The F1 (volumetric model) and R3 (shrinking core model) were suitable models for Fe2O3/TiO2, with Ea equal to 33.8kJ/mole where F1 and D3 (3-dimensional diffusion model), were suitable for Fe2O3–CuO/Al2O3 reduction reaction kinetics decryption with Ea=42.6kJ/mole (F1 model). The best fits for oxidation reaction was obtained for R3 model, and F1 was also good for Fe2O3/TiO2 oxygen carrier. The chemical looping oxygen uncoupling (CLOU) effect of Fe2O3–CuO/Al2O3 material is the best described by the F1 or D3 models. The CLOU effect activation energy is equal to 22.2kJ/mole.

Suggested Citation

  • Ksepko, Ewelina & Sciazko, Marek & Babinski, Piotr, 2014. "Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers," Applied Energy, Elsevier, vol. 115(C), pages 374-383.
  • Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:374-383
    DOI: 10.1016/j.apenergy.2013.10.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.10.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinsheng & Anthony, Edward J., 2008. "Clean combustion of solid fuels," Applied Energy, Elsevier, vol. 85(2-3), pages 73-79, February.
    2. Siriwardane, Ranjani V. & Ksepko, Ewelina & Tian, Hanjing & Poston, James & Simonyi, Thomas & Sciazko, Marek, 2013. "Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal," Applied Energy, Elsevier, vol. 107(C), pages 111-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2017. "A reduced fidelity model for the rotary chemical looping combustion reactor," Applied Energy, Elsevier, vol. 190(C), pages 725-739.
    2. Miller, Duane D. & Siriwardane, Ranjani & Poston, James, 2015. "Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite," Applied Energy, Elsevier, vol. 146(C), pages 111-121.
    3. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
    4. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2018. "Design and techno-economic optimization of a rotary chemical looping combustion power plant with CO2 capture," Applied Energy, Elsevier, vol. 231(C), pages 1179-1190.
    5. Gu, Zhenhua & Li, Kongzhai & Wang, Hua & Qing, Shan & Zhu, Xing & Wei, Yonggang & Cheng, Xianming & Yu, He & Cao, Yan, 2016. "Bulk monolithic Ce–Zr–Fe–O/Al2O3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier," Applied Energy, Elsevier, vol. 163(C), pages 19-31.
    6. Ksepko, Ewelina & Babiński, Piotr & Nalbandian, Lori, 2017. "The redox reaction kinetics of Sinai ore for chemical looping combustion applications," Applied Energy, Elsevier, vol. 190(C), pages 1258-1274.
    7. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
    2. Zhang, Shuai & Xiao, Rui & Zheng, Wenguang, 2014. "Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal," Applied Energy, Elsevier, vol. 130(C), pages 181-189.
    3. Cho, Won Chul & Lee, Do Yeon & Seo, Myung Won & Kim, Sang Done & Kang, KyoungSoo & Bae, Ki Kwang & Kim, Change Hee & Jeong, SeongUk & Park, Chu Sik, 2014. "Continuous operation characteristics of chemical looping hydrogen production system," Applied Energy, Elsevier, vol. 113(C), pages 1667-1674.
    4. Imtiaz, Qasim & Broda, Marcin & Müller, Christoph R., 2014. "Structure–property relationship of co-precipitated Cu-rich, Al2O3- or MgAl2O4-stabilized oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 119(C), pages 557-565.
    5. Aisyah, L. & Ashman, P.J. & Kwong, C.W., 2013. "Performance of coal fly-ash based oxygen carrier for the chemical looping combustion of synthesis gas," Applied Energy, Elsevier, vol. 109(C), pages 44-50.
    6. Meng, William X. & Banerjee, Subhodeep & Zhang, Xiao & Agarwal, Ramesh K., 2015. "Process simulation of multi-stage chemical-looping combustion using Aspen Plus," Energy, Elsevier, vol. 90(P2), pages 1869-1877.
    7. Siriwardane, Ranjani V. & Ksepko, Ewelina & Tian, Hanjing & Poston, James & Simonyi, Thomas & Sciazko, Marek, 2013. "Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal," Applied Energy, Elsevier, vol. 107(C), pages 111-123.
    8. Zhang, Xiaosong & Jin, Hongguang, 2013. "Thermodynamic analysis of chemical-looping hydrogen generation," Applied Energy, Elsevier, vol. 112(C), pages 800-807.
    9. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    10. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    11. Sun, Zhongwei & Wang, Shengwei & Zhou, Qulan & Hui, Shi'en, 2010. "Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system," Applied Energy, Elsevier, vol. 87(5), pages 1505-1512, May.
    12. Gao, Xiang & Ding, Honglei & Du, Zhen & Wu, Zuliang & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2010. "Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization," Applied Energy, Elsevier, vol. 87(8), pages 2647-2651, August.
    13. Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
    14. Fredrik Hildor & Henrik Leion & Tobias Mattisson, 2022. "Steel Converter Slag as an Oxygen Carrier—Interaction with Sulfur Dioxide," Energies, MDPI, vol. 15(16), pages 1-29, August.
    15. Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
    16. Schwebel, G.L. & Filippou, D. & Hudon, G. & Tworkowski, M. & Gipperich, A. & Krumm, W., 2014. "Experimental comparison of two different ilmenites in fluidized bed and fixed bed chemical-looping combustion," Applied Energy, Elsevier, vol. 113(C), pages 1902-1908.
    17. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    18. Belhadi, A. & Boumaza, S. & Trari, M., 2011. "Photoassisted hydrogen production under visible light over NiO/ZnO hetero-system," Applied Energy, Elsevier, vol. 88(12), pages 4490-4495.
    19. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    20. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:115:y:2014:i:c:p:374-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.