IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v145y2015icp180-190.html
   My bibliography  Save this article

Fixed bed reduction of hematite under alternating reduction and oxidation cycles

Author

Listed:
  • Breault, Ronald W.
  • Monazam, Esmail R.

Abstract

The rate of the reduction reaction of a low cost natural hematite oxygen carrier for chemical looping combustion was investigated in a fixed bed reactor where hematite samples of about 1kg were exposed to a flowing stream of methane and argon. The investigation aims to develop understanding of the factors that govern the rate of reduction with in larger reactors as compared to mostly TGA investigations in the literature. A comparison of the experimental data with a model indicated that reaction between the methane and the iron oxide shows multi-step reactions. The analysis also shows that the conversion occurs with a process that likely consumes all the oxygen close to the surface of the hematite particles and another process that is likely controlled by the diffusion of oxygen to the surface of the particles. Additional analysis shows that the thickness of the fast layer is on the order of 8 unit crystals. This is only about 0.4% of the hematite; however, it comprises about 20–25% of the conversion for the 10min reduction cycle.

Suggested Citation

  • Breault, Ronald W. & Monazam, Esmail R., 2015. "Fixed bed reduction of hematite under alternating reduction and oxidation cycles," Applied Energy, Elsevier, vol. 145(C), pages 180-190.
  • Handle: RePEc:eee:appene:v:145:y:2015:i:c:p:180-190
    DOI: 10.1016/j.apenergy.2015.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yongxing & Doroodchi, Elham & Moghtaderi, Behdad, 2014. "Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2," Applied Energy, Elsevier, vol. 113(C), pages 1916-1923.
    2. Breault, Ronald W. & Huckaby, E. David, 2013. "Parametric behavior of a CO2 capture process: CFD simulation of solid-sorbent CO2 absorption in a riser reactor," Applied Energy, Elsevier, vol. 112(C), pages 224-234.
    3. Ku, Young & Wu, Hsuan-Chih & Chiu, Ping-Chin & Tseng, Yao-Hsuan & Kuo, Yu-Lin, 2014. "Methane combustion by moving bed fuel reactor with Fe2O3/Al2O3 oxygen carriers," Applied Energy, Elsevier, vol. 113(C), pages 1909-1915.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakano, Anna & Nakano, Jinichiro & Bennett, James, 2020. "Real-time high temperature investigations of an individual natural hematite ore particle for chemical looping oxygen exchange," Applied Energy, Elsevier, vol. 268(C).
    2. Samuel Bayham & Ronald Breault & Justin Weber, 2017. "Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor," Energies, MDPI, vol. 10(8), pages 1-22, August.
    3. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, F.C. & Liao, P.H. & Tsai, C.K. & Hsiao, M.C. & Paul Wang, H., 2014. "Chemical-looping combustion of syngas with nano CuO–NiO on chabazite," Applied Energy, Elsevier, vol. 113(C), pages 1731-1736.
    2. Huang, Liang & Tang, Mingchen & Fan, Maohong & Cheng, Hansong, 2015. "Density functional theory study on the reaction between hematite and methane during chemical looping process," Applied Energy, Elsevier, vol. 159(C), pages 132-144.
    3. Breault, Ronald W. & Monazam, Esmail R. & Carpenter, Jared T., 2015. "Analysis of hematite re-oxidation in the chemical looping process," Applied Energy, Elsevier, vol. 157(C), pages 174-182.
    4. Huang, Xin & Fan, Maohong & Wang, Xingjun & Wang, Yonggang & Argyle, Morris D. & Zhu, Yufei, 2018. "A cost-effective approach to realization of the efficient methane chemical-looping combustion by using coal fly ash as a support for oxygen carrier," Applied Energy, Elsevier, vol. 230(C), pages 393-402.
    5. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    6. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    7. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    8. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    9. Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
    10. Huang, Xin & Wang, Xingjun & Fan, Maohong & Wang, Yonggang & Adidharma, Hertanto & Gasem, Khaled A.M. & Radosz, Maciej, 2017. "A cost-effective approach to reducing carbon deposition and resulting deactivation of oxygen carriers for improvement of energy efficiency and CO2 capture during methane chemical-looping combustion," Applied Energy, Elsevier, vol. 193(C), pages 381-392.
    11. Su, Shi & Yu, Xinxiang, 2015. "A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit," Energy, Elsevier, vol. 79(C), pages 428-438.
    12. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    13. Miller, Duane D. & Siriwardane, Ranjani & Poston, James, 2015. "Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite," Applied Energy, Elsevier, vol. 146(C), pages 111-121.
    14. Zhao, Bingtao & Su, Yaxin & Tao, Wenwen, 2014. "Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction," Applied Energy, Elsevier, vol. 136(C), pages 132-142.
    15. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    16. Liu, Xingrang & Bansal, R.C., 2014. "Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant," Applied Energy, Elsevier, vol. 130(C), pages 658-669.
    17. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
    18. Chen, Qindong & Hu, Song & Xu, Qiyong & Su, Sheng & Wang, Yi & Xu, Kai & He, Limo & Xiang, Jun, 2021. "Steam synergic effect on oxygen carrier performance and WGS promotion ability of iron-oxides," Energy, Elsevier, vol. 215(PA).
    19. Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
    20. Xu, Yin & Jin, Baosheng & Zhao, Yongling & Hu, Eric J. & Chen, Xiaole & Li, Xiaochuan, 2018. "Numerical simulation of aqueous ammonia-based CO2 absorption in a sprayer tower: An integrated model combining gas-liquid hydrodynamics and chemistry," Applied Energy, Elsevier, vol. 211(C), pages 318-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:145:y:2015:i:c:p:180-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.