IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp558-570.html
   My bibliography  Save this article

The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation

Author

Listed:
  • Lešnik, Luka
  • Vajda, Blaž
  • Žunič, Zoran
  • Škerget, Leopold
  • Kegl, Breda

Abstract

The presented work focuses on numerical and experimental analyses of biodiesel fuel’s influence on the injection characteristics of a mechanically-controlled injection system, and on the operating conditions of a heavy-duty diesel engine. Addressed are mineral diesel fuel and neat biodiesel fuel made from rapeseed oil. The influence of biodiesel on mechanically controlled injection system characteristics was tested experimentally on an injection system test-bed. The injection test-bed was equipped with a glass injection chamber in order to observe the development of the fuel-spray by using a high-speed camera. The results of the experimental measurements were compared to the numerical results obtained by using our own mathematical simulation program. This program has been used to analyze the influences of different fuel properties on the injection system’s characteristics. The photos taken with a high-speed camera were compared to the simulation results obtained by using the AVL FIRE 3D CFD simulation program. This software was used to simulate the fuel-spray development during different stages of the injection process. Furthermore, the influence of biodiesel fuel on the engine operating condition of a heavy-duty diesel engine and its’ emission formation was tested experimentally on an engine test-bed, and numerically by using the AVL BOOST software. It was found out that the tested biodiesel could be used as an alternative fuel for heavy-duty diesel engines.

Suggested Citation

  • Lešnik, Luka & Vajda, Blaž & Žunič, Zoran & Škerget, Leopold & Kegl, Breda, 2013. "The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation," Applied Energy, Elsevier, vol. 111(C), pages 558-570.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:558-570
    DOI: 10.1016/j.apenergy.2013.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jiefeng & Gaustad, Gabrielle & Trabold, Thomas A., 2013. "Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification," Applied Energy, Elsevier, vol. 104(C), pages 936-944.
    2. Kegl, Breda, 2011. "Influence of biodiesel on engine combustion and emission characteristics," Applied Energy, Elsevier, vol. 88(5), pages 1803-1812, May.
    3. Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
    4. Mohamed Ismail, Harun & Ng, Hoon Kiat & Queck, Cheen Wei & Gan, Suyin, 2012. "Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends," Applied Energy, Elsevier, vol. 92(C), pages 769-777.
    5. Park, Su Han & Cha, Junepyo & Lee, Chang Sik, 2012. "Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine," Applied Energy, Elsevier, vol. 99(C), pages 334-343.
    6. Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
    7. Wu, Horng-Wen & Wu, Zhan-Yi, 2013. "Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2," Applied Energy, Elsevier, vol. 104(C), pages 362-370.
    8. Pandian, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel-d," Applied Energy, Elsevier, vol. 88(8), pages 2663-2676, August.
    9. Ng, Hoon Kiat & Gan, Suyin & Ng, Jo-Han & Pang, Kar Mun, 2013. "Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism," Applied Energy, Elsevier, vol. 102(C), pages 1275-1287.
    10. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    11. Öner, Cengiz & Altun, Sehmus, 2009. "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine," Applied Energy, Elsevier, vol. 86(10), pages 2114-2120, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nemat Keramat Siavash & Golamhassan Najafi & Sayed Reza Hassan-Beygi & Hossain Ahmadian & Barat Ghobadian & Talal Yusaf & Mohammed Mazlan, 2021. "Time–Frequency Analysis of Diesel Engine Noise Using Biodiesel Fuel Blends," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    2. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    3. Plamondon, E. & Seers, P., 2014. "Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends," Applied Energy, Elsevier, vol. 131(C), pages 411-424.
    4. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    5. Serrano, J.R. & Climent, H. & Piqueras, P. & Angiolini, E., 2014. "Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement," Applied Energy, Elsevier, vol. 132(C), pages 507-523.
    6. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2016. "Analysis of combustion phenomena and pollutant formation in a small compression ignition engine fuelled with blended and pure rapeseed methyl ester," Energy, Elsevier, vol. 106(C), pages 618-630.
    7. Kumar, AR. Mahesh & Kannan, M. & Nataraj, G., 2020. "A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel," Renewable Energy, Elsevier, vol. 146(C), pages 1781-1795.
    8. Sattar Jabbar Murad Algayyim & Andrew P. Wandel & Talal Yusaf, 2018. "The Impact of Injector Hole Diameter on Spray Behaviour for Butanol-Diesel Blends," Energies, MDPI, vol. 11(5), pages 1-12, May.
    9. Simikic, M. & Tomic, M. & Savin, L. & Micic, R. & Ivanisevic, I. & Ivanisevic, M., 2018. "Influence of biodiesel on the performances of farm tractors: Experimental testing in stationary and non-stationary conditions," Renewable Energy, Elsevier, vol. 121(C), pages 677-687.
    10. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    11. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    12. Tripathi, Shweta & Subramanian, K.A., 2017. "Experimental investigation of utilization of Soya soap stock based acid oil biodiesel in an automotive compression ignition engine," Applied Energy, Elsevier, vol. 198(C), pages 332-346.
    13. Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.
    14. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    15. Algayyim, Sattar Jabbar Murad & Wandel, Andrew P. & Yusaf, Talal & Hamawand, Ihsan, 2017. "The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engi," Energy, Elsevier, vol. 140(P1), pages 1074-1086.
    16. Kwon, Eilhann E. & Jeon, Eui-Chan & Yi, Haakrho & Kim, Sungpyo, 2014. "Transforming duck tallow into biodiesel via noncatalytic transesterification," Applied Energy, Elsevier, vol. 116(C), pages 20-25.
    17. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    18. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    19. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    20. Serrano, L. & Lopes, M. & Pires, N. & Ribeiro, I. & Cascão, P. & Tarelho, L. & Monteiro, A. & Nielsen, O. & da Silva, M. Gameiro & Borrego, C., 2015. "Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 230-238.
    21. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    22. Channapattana, S.V. & Pawar, Abhay A. & Kamble, Prashant G., 2017. "Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model," Applied Energy, Elsevier, vol. 187(C), pages 84-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    2. Chang, Yu-Cheng & Lee, Wen-Jhy & Wang, Lin-Chi & Yang, Hsi-Hsien & Cheng, Man-Ting & Lu, Jau-Huai & Tsai, Ying I. & Young, Li-Hao, 2014. "Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine," Applied Energy, Elsevier, vol. 113(C), pages 631-638.
    3. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    4. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    5. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
    6. Serrano, L. & Lopes, M. & Pires, N. & Ribeiro, I. & Cascão, P. & Tarelho, L. & Monteiro, A. & Nielsen, O. & da Silva, M. Gameiro & Borrego, C., 2015. "Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 230-238.
    7. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    8. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    9. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    10. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    11. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    12. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    13. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    14. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    15. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    16. Ng, Hoon Kiat & Gan, Suyin & Ng, Jo-Han & Pang, Kar Mun, 2013. "Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism," Applied Energy, Elsevier, vol. 102(C), pages 1275-1287.
    17. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2014. "Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine," Applied Energy, Elsevier, vol. 119(C), pages 530-536.
    18. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    19. Sam Ki Yoon & Min Soo Kim & Han Joo Kim & Nag Jung Choi, 2014. "Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine," Energies, MDPI, vol. 7(12), pages 1-18, December.
    20. Elsanusi, Osama Ahmed & Roy, Murari Mohon & Sidhu, Manpreet Singh, 2017. "Experimental Investigation on a Diesel Engine Fueled by Diesel-Biodiesel Blends and their Emulsions at Various Engine Operating Conditions," Applied Energy, Elsevier, vol. 203(C), pages 582-593.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:558-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.