IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i12p8132-8149d43200.html
   My bibliography  Save this article

Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

Author

Listed:
  • Sam Ki Yoon

    (Technical Education Center, GM Korea Company, 72 Saengmuol-ro, Gunsansi, Jeollabuk-do 573-882, Korea)

  • Min Soo Kim

    (Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Jeonjusi, Jeollabuk-do 561-756, Korea)

  • Han Joo Kim

    (Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Jeonjusi, Jeollabuk-do 561-756, Korea)

  • Nag Jung Choi

    (Division of Mechanical Design Engineering, Chonbuk National University, 567 Baekje-daero, Jeonjusi, Jeollabuk-do 561-756, Korea)

Abstract

In this study, we investigated the effects of canola oil biodiesel (BD) to improve combustion and exhaust emissions in a common rail direct injection (DI) diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP) decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC) increased at all engine speeds while the carbon monoxide (CO) and particulate matter (PM) emissions were considerably reduced. On the other hand, the nitrogen oxide (NO x ) emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR) rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NO x emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NO x emissions.

Suggested Citation

  • Sam Ki Yoon & Min Soo Kim & Han Joo Kim & Nag Jung Choi, 2014. "Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine," Energies, MDPI, vol. 7(12), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8132-8149:d:43200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/12/8132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/12/8132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Horng-Wen & Wang, Ren-Hung & Ou, Dung-Je & Chen, Ying-Chuan & Chen, Teng-yu, 2011. "Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air," Applied Energy, Elsevier, vol. 88(11), pages 3882-3890.
    2. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    3. Ferreira, S.L. & dos Santos, A.M. & de Souza, G.R. & Polito, W.L., 2008. "Analysis of the emissions of volatile organic compounds from the compression ignition engine fueled by diesel–biodiesel blend and diesel oil using gas chromatography," Energy, Elsevier, vol. 33(12), pages 1801-1806.
    4. Fathi, Morteza & Saray, R. Khoshbakhti & Checkel, M. David, 2011. "The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 88(12), pages 4719-4724.
    5. Öner, Cengiz & Altun, Sehmus, 2009. "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine," Applied Energy, Elsevier, vol. 86(10), pages 2114-2120, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Cong Ge & Min Soo Kim & Sam Ki Yoon & Nag Jung Choi, 2015. "Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend," Energies, MDPI, vol. 8(7), pages 1-14, July.
    2. Hanzhengnan Yu & Xingyu Liang & Gequn Shu & Xu Wang & Yuesen Wang & Hongsheng Zhang, 2016. "Experimental Investigation on Wall Film Distribution of Dimethyl Ether/Diesel Blended Fuels Formed during Spray Wall Impingement," Energies, MDPI, vol. 9(11), pages 1-17, November.
    3. Hongting Zhao & Zhiqing Zhang & Kai Lu & Yanshuai Ye & Sheng Gao, 2024. "Effects Analysis of FAME on the Engine Characteristics of Different Polymerized Biofuels in Compression Ignition Engine," Energies, MDPI, vol. 17(10), pages 1-30, May.
    4. Srihari, S. & Thirumalini, S. & Prashanth, K., 2017. "An experimental study on the performance and emission characteristics of PCCI-DI engine fuelled with diethyl ether-biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 107(C), pages 440-447.
    5. Arkadiusz Jamrozik & Wojciech Tutak & Renata Gnatowska & Łukasz Nowak, 2019. "Comparative Analysis of the Combustion Stability of Diesel-Methanol and Diesel-Ethanol in a Dual Fuel Engine," Energies, MDPI, vol. 12(6), pages 1-17, March.
    6. Krzysztof Biernat & Piotr Bocian & Paweł Bukrejewski & Krzysztof R. Noworyta, 2019. "Application of the Impedance Spectroscopy as a New Tool for Studying Biodiesel Fuel Aging Processes," Energies, MDPI, vol. 12(4), pages 1-12, February.
    7. Farzad Jaliliantabar & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Artificial Neural Network Modeling and Sensitivity Analysis of Performance and Emissions in a Compression Ignition Engine Using Biodiesel Fuel," Energies, MDPI, vol. 11(9), pages 1-24, September.
    8. Ho Young Kim & Jun Cong Ge & Nag Jung Choi, 2019. "Effects of Fuel Injection Pressure on Combustion and Emission Characteristics under Low Speed Conditions in a Diesel Engine Fueled with Palm Oil Biodiesel," Energies, MDPI, vol. 12(17), pages 1-14, August.
    9. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan & Justin Hyde, 2016. "Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines," Energies, MDPI, vol. 9(6), pages 1-15, May.
    10. Oleksandr Cherednichenko & Valerii Havrysh & Vyacheslav Shebanin & Antonina Kalinichenko & Grzegorz Mentel & Joanna Nakonieczny, 2020. "Local Green Power Supply Plants Based on Alcohol Regenerative Gas Turbines: Economic and Environmental Aspects," Energies, MDPI, vol. 13(9), pages 1-20, May.
    11. Can, Özer & Öztürk, Erkan & Yücesu, H. Serdar, 2017. "Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine," Renewable Energy, Elsevier, vol. 109(C), pages 73-82.
    12. Deviren, Halis, 2024. "Enhancing diesel engine efficiency and emission performance through oxygenated and non-oxygenated additives: A comparative study of alcohol and cycloalkane impacts on diesel-biodiesel blends," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Cong Ge & Nag Jung Choi, 2020. "Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    3. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    4. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    5. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    6. Lešnik, Luka & Vajda, Blaž & Žunič, Zoran & Škerget, Leopold & Kegl, Breda, 2013. "The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation," Applied Energy, Elsevier, vol. 111(C), pages 558-570.
    7. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    8. Visakhamoorthy, Sona & Wen, John Z. & Sivoththaman, Siva & Koch, Charles Robert, 2012. "Numerical study of a butanol/heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine utilizing negative valve overlap," Applied Energy, Elsevier, vol. 94(C), pages 166-173.
    9. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    10. Liu, Jie & Yang, Fuyuan & Wang, Hewu & Ouyang, Minggao & Hao, Shougang, 2013. "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing," Applied Energy, Elsevier, vol. 110(C), pages 201-206.
    11. Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
    12. Kumar, Pravin & Rehman, A., 2016. "Bio-diesel in homogeneous charge compression ignition (HCCI) combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 536-550.
    13. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    14. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    15. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    16. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    17. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    18. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    19. Haseeb, A.S.M.A. & Jun, T.S. & Fazal, M.A. & Masjuki, H.H., 2011. "Degradation of physical properties of different elastomers upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(3), pages 1814-1819.
    20. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8132-8149:d:43200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.