IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v131y2014icp411-424.html
   My bibliography  Save this article

Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends

Author

Listed:
  • Plamondon, E.
  • Seers, P.

Abstract

Using biodiesel/diesel fuel blends and multiple injection strategies in diesel engines have shown promising results in improving the trade-off relationship between nitrous oxides and particulate matters. In order to explain the effect of both technologies on exhaust emissions and to develop adequate control strategies, the behavior of the injection process needs to be thoroughly understood. This paper proposes a simplified model of an indirect-acting piezoelectric diesel injector. The objective was to build a model that can predict the highly transient effect of short injection events and the impact of biodiesel with sufficient precision while being sufficiently fast to be implemented in an engine control unit (ECU) for real-time closed-loop flow-rate monitoring. The model was validated against experimental results for different injection pressures as well as different energizing times (ETs) and dwell times (DTs). When comparing the use of biodiesel against diesel, simulation of the needle lift showed that there was a critical ET for which both fuels yielded the same injection duration. For shorter energizing times, the biodiesel injection duration was shorter than for diesel, while longer energizing times presented the opposite behavior. The injection duration for the different blends falls between the pure-fuel situations. The use of constant properties (density, viscosity) and constant discharge coefficient (Cd) showed no major loss in the precision of the flow-rate estimation, but revealed a great gain in calculus time while the use of pressure dependent bulk modulus proved to be essential in order to have no drastic changes in the final predictions. Finally, the model presented in this study showed that it could estimate with sufficient precision the opening and closing delay of different biodiesel/diesel blends for multiple injection strategies while yielding a calculus time enabling implementation in an ECU.

Suggested Citation

  • Plamondon, E. & Seers, P., 2014. "Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends," Applied Energy, Elsevier, vol. 131(C), pages 411-424.
  • Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:411-424
    DOI: 10.1016/j.apenergy.2014.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2011. "Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel," Applied Energy, Elsevier, vol. 88(1), pages 88-98, January.
    2. Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization," Applied Energy, Elsevier, vol. 88(4), pages 1068-1074, April.
    3. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    4. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    5. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    6. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    7. Mohamed Ismail, Harun & Ng, Hoon Kiat & Gan, Suyin & Lucchini, Tommaso, 2013. "Computational study of biodiesel–diesel fuel blends on emission characteristics for a light-duty diesel engine using OpenFOAM," Applied Energy, Elsevier, vol. 111(C), pages 827-841.
    8. Ferrari, A. & Mittica, A. & Spessa, E., 2013. "Benefits of hydraulic layout over driving system in piezo-injectors and proposal of a new-concept CR injector with an integrated Minirail," Applied Energy, Elsevier, vol. 103(C), pages 243-255.
    9. Lešnik, Luka & Vajda, Blaž & Žunič, Zoran & Škerget, Leopold & Kegl, Breda, 2013. "The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation," Applied Energy, Elsevier, vol. 111(C), pages 558-570.
    10. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander I. Balitskii & Karol F. Abramek & Tomasz K. Osipowicz & Jacek J. Eliasz & Valentina O. Balitska & Paweł Kochmański & Konrad Prajwowski & Łukasz S. Mozga, 2023. "Hydrogen-Containing “Green” Fuels Influence on the Thermal Protection and Formation of Wear Processes Components in Compression-Ignition Engines Modern Injection System," Energies, MDPI, vol. 16(8), pages 1-17, April.
    2. Soriano, J.A. & Mata, C. & Armas, O. & Ávila, C., 2018. "A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis," Energy, Elsevier, vol. 158(C), pages 845-858.
    3. Intarat Naruemon & Long Liu & Qihao Mei & Xiuzhen Ma, 2019. "Investigation on an Injection Strategy Optimization for Diesel Engines Using a One-Dimensional Spray Model," Energies, MDPI, vol. 12(21), pages 1-19, November.
    4. Serrano, L. & Lopes, M. & Pires, N. & Ribeiro, I. & Cascão, P. & Tarelho, L. & Monteiro, A. & Nielsen, O. & da Silva, M. Gameiro & Borrego, C., 2015. "Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 230-238.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, L. & Lopes, M. & Pires, N. & Ribeiro, I. & Cascão, P. & Tarelho, L. & Monteiro, A. & Nielsen, O. & da Silva, M. Gameiro & Borrego, C., 2015. "Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine," Applied Energy, Elsevier, vol. 146(C), pages 230-238.
    2. Olmeda, Pablo & Martín, Jaime & Novella, Ricardo & Carreño, Ricardo, 2015. "An adapted heat transfer model for engines with tumble motion," Applied Energy, Elsevier, vol. 158(C), pages 190-202.
    3. Amba Prasad Rao, G. & Kaleemuddin, Syed, 2011. "Development of variable timing fuel injection cam for effective abatement of diesel engine emissions," Applied Energy, Elsevier, vol. 88(8), pages 2653-2662, August.
    4. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    5. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    6. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    7. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    9. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    10. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    11. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    12. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    13. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    14. Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.
    15. Magno, Agnese & Mancaruso, Ezio & Vaglieco, Bianca Maria, 2014. "Experimental investigation in an optically accessible diesel engine of a fouled piezoelectric injector," Energy, Elsevier, vol. 64(C), pages 842-852.
    16. Ge, Jun Cong & Wu, Guirong & Yoo, Byeong-O & Choi, Nag Jung, 2022. "Effect of injection timing on combustion, emission and particle morphology of an old diesel engine fueled with ternary blends at low idling operations," Energy, Elsevier, vol. 253(C).
    17. Tripathi, Shweta & Subramanian, K.A., 2017. "Experimental investigation of utilization of Soya soap stock based acid oil biodiesel in an automotive compression ignition engine," Applied Energy, Elsevier, vol. 198(C), pages 332-346.
    18. Payri, Raul & Gimeno, Jaime & Bardi, Michele & Plazas, Alejandro H., 2013. "Study liquid length penetration results obtained with a direct acting piezo electric injector," Applied Energy, Elsevier, vol. 106(C), pages 152-162.
    19. Yang, Binbin & Yao, Mingfa & Cheng, Wai K. & Li, Yu & Zheng, Zunqing & Li, Shanju, 2014. "Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel," Applied Energy, Elsevier, vol. 113(C), pages 722-733.
    20. S., d'Ambrosio & A., Ferrari, 2018. "Diesel engines equipped with piezoelectric and solenoid injectors: hydraulic performance of the injectors and comparison of the emissions, noise and fuel consumption," Applied Energy, Elsevier, vol. 211(C), pages 1324-1342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:131:y:2014:i:c:p:411-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.