IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp1267-1281.html
   My bibliography  Save this article

Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review

Author

Listed:
  • Mohamed Shameer, P.
  • Ramesh, K.
  • Sakthivel, R.
  • Purnachandran, R.

Abstract

Many researches have been carried out towards the reduction in noxious emissions from diesel engines. This paper reviews the studies on the outcomes of operating parameters discrepancy on the engine emission issues carried out by various authors in different diesel engines fuelled with biodiesel from different feedstocks. The main goal of this paper is to enlighten the momentous of injection parameters like injection timing and injection pressure on the engine emission characteristics. This paper touches upon the advancement and retardation methods of fuel injection timing and injection pressure to inspect the engine emission indicators such as carbon monoxide, hydrocarbon, oxides of nitrogen, smoke, particulate matter and carbon dioxide contents. Comparative evaluation has been conversed accompanied by apropos causes for the deviation of emission characteristics.

Suggested Citation

  • Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:1267-1281
    DOI: 10.1016/j.rser.2016.09.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116306086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nwafor, O.M.I. & Rice, G. & Ogbonna, A.I., 2000. "Effect of advanced injection timing on the performance of rapeseed oil in diesel engines," Renewable Energy, Elsevier, vol. 21(3), pages 433-444.
    2. Narayana Reddy, J. & Ramesh, A., 2006. "Parametric studies for improving the performance of a Jatropha oil-fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 31(12), pages 1994-2016.
    3. Mangus, Michael & Kiani, Farshid & Mattson, Jonathan & Tabakh, Daniel & Petka, James & Depcik, Christopher & Peltier, Edward & Stagg-Williams, Susan, 2015. "Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection," Energy, Elsevier, vol. 89(C), pages 932-945.
    4. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.
    5. Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
    6. Lešnik, Luka & Vajda, Blaž & Žunič, Zoran & Škerget, Leopold & Kegl, Breda, 2013. "The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation," Applied Energy, Elsevier, vol. 111(C), pages 558-570.
    7. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2013. "HC and CO emissions reduction by early injection strategy in a bioethanol blended diesel-fueled engine with a narrow angle injection system," Applied Energy, Elsevier, vol. 107(C), pages 81-88.
    8. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    9. Çelikten, İsmet & Koca, Atilla & Ali Arslan, Mehmet, 2010. "Comparison of performance and emissions of diesel fuel, rapeseed and soybean oil methyl esters injected at different pressures," Renewable Energy, Elsevier, vol. 35(4), pages 814-820.
    10. Hwang, Joonsik & Qi, Donghui & Jung, Yongjin & Bae, Choongsik, 2014. "Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel," Renewable Energy, Elsevier, vol. 63(C), pages 9-17.
    11. Park, Su Han & Cha, Junepyo & Kim, Hyung Jun & Lee, Chang Sik, 2012. "Effect of early injection strategy on spray atomization and emission reduction characteristics in bioethanol blended diesel fueled engine," Energy, Elsevier, vol. 39(1), pages 375-387.
    12. Agarwal, Avinash Kumar & Dhar, Atul & Gupta, Jai Gopal & Kim, Woong Il & Lee, Chang Sik & Park, Sungwook, 2014. "Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 212-221.
    13. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    14. Beatrice, Carlo & Napolitano, Pierpaolo & Guido, Chiara, 2014. "Injection parameter optimization by DoE of a light-duty diesel engine fed by Bio-ethanol/RME/diesel blend," Applied Energy, Elsevier, vol. 113(C), pages 373-384.
    15. Saravanan, S. & Nagarajan, G. & Lakshmi Narayana Rao, G. & Sampath, S., 2014. "Theoretical and experimental investigation on effect of injection timing on NOx emission of biodiesel blend," Energy, Elsevier, vol. 66(C), pages 216-221.
    16. Imtenan, S. & Ashrafur Rahman, S.M. & Masjuki, H.H. & Varman, M. & Kalam, M.A., 2015. "Effect of dynamic injection pressure on performance, emission and combustion characteristics of a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1205-1211.
    17. Pandian, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel-d," Applied Energy, Elsevier, vol. 88(8), pages 2663-2676, August.
    18. Jingura, Raphael M. & Matengaifa, Rutendo, 2009. "Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1116-1120, June.
    19. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    20. Ganapathy, T. & Gakkhar, R.P. & Murugesan, K., 2011. "Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine," Applied Energy, Elsevier, vol. 88(12), pages 4376-4386.
    21. Jaichandar, S. & Senthil Kumar, P. & Annamalai, K., 2012. "Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 47(1), pages 388-394.
    22. Murugesan, A. & Umarani, C. & Subramanian, R. & Nedunchezhian, N., 2009. "Bio-diesel as an alternative fuel for diesel engines--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 653-662, April.
    23. Shivakumar & Srinivasa Pai, P. & Shrinivasa Rao, B.R., 2011. "Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings," Applied Energy, Elsevier, vol. 88(7), pages 2344-2354, July.
    24. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    25. Gumus, M., 2008. "Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines," Renewable Energy, Elsevier, vol. 33(11), pages 2448-2457.
    26. Karabektas, Murat & Hosoz, Murat, 2009. "Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends," Renewable Energy, Elsevier, vol. 34(6), pages 1554-1559.
    27. Puhan, Sukumar & Jegan, R. & Balasubbramanian, K. & Nagarajan, G., 2009. "Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine," Renewable Energy, Elsevier, vol. 34(5), pages 1227-1233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    2. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    3. Anis, Samsudin & Budiandono, Galuh Nur, 2019. "Investigation of the effects of preheating temperature of biodiesel-diesel fuel blends on spray characteristics and injection pump performances," Renewable Energy, Elsevier, vol. 140(C), pages 274-280.
    4. Szabados, György & Bereczky, Ákos, 2018. "Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine," Renewable Energy, Elsevier, vol. 121(C), pages 568-578.
    5. Amit Kumar Sharma & Pankaj Kumar Sharma & Venkateswarlu Chintala & Narayan Khatri & Alok Patel, 2020. "Environment-Friendly Biodiesel/Diesel Blends for Improving the Exhaust Emission and Engine Performance to Reduce the Pollutants Emitted from Transportation Fleets," IJERPH, MDPI, vol. 17(11), pages 1-18, May.
    6. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    7. Shameer, P. Mohamed & Ramesh, K., 2017. "Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends," Energy, Elsevier, vol. 118(C), pages 1334-1344.
    8. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    9. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    10. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).
    11. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    12. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    13. Dimitrios N Tziourtzioumis & Anastassios M Stamatelos, 2017. "Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion," Energies, MDPI, vol. 10(7), pages 1-15, July.
    14. Carlo Caligiuri & Marco Bietresato & Angelo Algieri & Marco Baratieri & Massimiliano Renzi, 2022. "Experimental Investigation and RSM Modeling of the Effects of Injection Timing on the Performance and NO x Emissions of a Micro-Cogeneration Unit Fueled with Biodiesel Blends," Energies, MDPI, vol. 15(10), pages 1-19, May.
    15. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    16. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    17. Ismail, Tamer M. & Lu, Ding & Ramzy, Khaled & Abd El-Salam, M. & Yu, Guangsuo & Elkady, M.A., 2019. "Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt," Energy, Elsevier, vol. 189(C).
    18. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    19. Sam Ki Yoon & Jun Cong Ge & Nag Jung Choi, 2019. "Influence of Fuel Injection Pressure on the Emissions Characteristics and Engine Performance in a CRDI Diesel Engine Fueled with Palm Biodiesel Blends," Energies, MDPI, vol. 12(20), pages 1-16, October.
    20. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    21. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    22. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    2. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    3. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    4. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    5. Imtenan, S. & Ashrafur Rahman, S.M. & Masjuki, H.H. & Varman, M. & Kalam, M.A., 2015. "Effect of dynamic injection pressure on performance, emission and combustion characteristics of a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1205-1211.
    6. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    7. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    9. T. M. Yunus Khan & Irfan Anjum Badruddin & Manzoore Elahi M. Soudagar & Sanjeev V. Khandal & Sarfaraz Kamangar & Imran Mokashi & M. A. Mujtaba & Nazia Hossain, 2021. "Biodiesel Production Using Modified Direct Transesterification by Sequential Use of Acid-Base Catalysis and Performance Evaluation of Diesel Engine Using Various Blends," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    10. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    11. Patel, Paresh D. & Lakdawala, Absar & Chourasia, Sajan & Patel, Rajesh N., 2016. "Bio fuels for compression ignition engine: A review on engine performance, emission and life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 24-43.
    12. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    13. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    14. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    15. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    16. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    17. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    18. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    19. Hwang, Joonsik & Qi, Donghui & Jung, Yongjin & Bae, Choongsik, 2014. "Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel," Renewable Energy, Elsevier, vol. 63(C), pages 9-17.
    20. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:1267-1281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.