IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p5042-5055.html
   My bibliography  Save this article

Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content

Author

Listed:
  • Hulwan, Dattatray Bapu
  • Joshi, Satishchandra V.

Abstract

Feasibility of using high percentage of ethanol in diesel–ethanol blends, with biodiesel as a co-solvent and properties enhancer has been investigated. The blends tested are D70/E20/B10 (blend A), D50/E30/B20 (blend B) D50/E40/B10 (blend C), and Diesel (D100). The blends are prepared to get maximum percentage of oxygen content but keeping important properties such as density, viscosity and Cetane index within acceptable limits. Experiments are conducted on a multicylinder, DI diesel engine, whose original injection timing was 13° CA BTDC. The engine did not run on blends B and C at this injection timing and it was required to advance timing to 18° and 21° CA BTDC to enable the use of blends B and C respectively. However advancing injection timing almost doubled the NO emissions and increased peak firing pressure. The P–θ and net heat release diagrams shows that the combustion process of these blends delayed at low loads but approaches to the diesel fuel at high loads. The comparison of blend results with baseline diesel showed that brake specific fuel consumption increased considerably, thermal efficiency improved slightly, smoke opacity reduced remarkably at high loads. NO variation depends on operating conditions while CO emissions drastically increased at low loads. Blend B which replaced 50% diesel and having oxygen content up to 12.21% by weight has given satisfactory performance for steady state running mode up to 1600 RPM however, it does not showed any benefit on peak smoke emission during free acceleration test.

Suggested Citation

  • Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:5042-5055
    DOI: 10.1016/j.apenergy.2011.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    2. Nwafor, O.M.I. & Rice, G. & Ogbonna, A.I., 2000. "Effect of advanced injection timing on the performance of rapeseed oil in diesel engines," Renewable Energy, Elsevier, vol. 21(3), pages 433-444.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    2. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    3. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    4. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    5. Sayin, Cenk & Uslu, Kadir & Canakci, Mustafa, 2008. "Influence of injection timing on the exhaust emissions of a dual-fuel CI engine," Renewable Energy, Elsevier, vol. 33(6), pages 1314-1323.
    6. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    7. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    8. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    9. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    10. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    11. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    12. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    13. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    14. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    15. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    16. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    17. Sathiyamoorthi, R. & Sankaranarayanan, G., 2017. "The effects of using ethanol as additive on the combustion and emissions of a direct injection diesel engine fuelled with neat lemongrass oil-diesel fuel blend," Renewable Energy, Elsevier, vol. 101(C), pages 747-756.
    18. Yaoyao Ying & Chenxuan Xu & Dong Liu & Bo Jiang & Pengfei Wang & Wei Wang, 2017. "Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames," Energies, MDPI, vol. 10(1), pages 1-16, January.
    19. Senthilraja, R. & Sivakumar, V. & Thirugnanasambandham, K. & Nedunchezhian, N., 2016. "Performance, emission and combustion characteristics of a dual fuel engine with Diesel–Ethanol – Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel," Energy, Elsevier, vol. 112(C), pages 899-907.
    20. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:5042-5055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.