My bibliography
Save this item
The M4 Competition: 100,000 time series and 61 forecasting methods
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
- Saloux, Etienne & Runge, Jason & Zhang, Kun, 2023. "Operation optimization of multi-boiler district heating systems using artificial intelligence-based model predictive control: Field demonstrations," Energy, Elsevier, vol. 285(C).
- Wang, Wenting & Guo, Yufeng & Yang, Dazhi & Zhang, Zili & Kleissl, Jan & van der Meer, Dennis & Yang, Guoming & Hong, Tao & Liu, Bai & Huang, Nantian & Mayer, Martin János, 2024. "Economics of physics-based solar forecasting in power system day-ahead scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Montero-Manso, Pablo & Hyndman, Rob J., 2021.
"Principles and algorithms for forecasting groups of time series: Locality and globality,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
- Pablo Montero-Manso & Rob J Hyndman, 2020. "Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality," Monash Econometrics and Business Statistics Working Papers 45/20, Monash University, Department of Econometrics and Business Statistics.
- Philipp Ratz, 2022. "Nonparametric Value-at-Risk via Sieve Estimation," Papers 2205.07101, arXiv.org.
- Bartłomiej Gaweł & Andrzej Paliński, 2021. "Long-Term Natural Gas Consumption Forecasting Based on Analog Method and Fuzzy Decision Tree," Energies, MDPI, vol. 14(16), pages 1-26, August.
- Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
- Filip Stanek, 2021. "Optimal Out-of-Sample Forecast Evaluation under Stationarity," CERGE-EI Working Papers wp712, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Aleksandr N. Grekov & Elena V. Vyshkvarkova & Aleksandr S. Mavrin, 2024. "Forecasting and Anomaly Detection in BEWS: Comparative Study of Theta, Croston, and Prophet Algorithms," Forecasting, MDPI, vol. 6(2), pages 1-14, May.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Evangelos Spiliotis & Fotios Petropoulos & Konstantinos Nikolopoulos, 2020. "The Impact of Imperfect Weather Forecasts on Wind Power Forecasting Performance: Evidence from Two Wind Farms in Greece," Energies, MDPI, vol. 13(8), pages 1-18, April.
- Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2022. "Classification-based model selection in retail demand forecasting," International Journal of Forecasting, Elsevier, vol. 38(1), pages 209-223.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
- Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
- Liu, Lianyi & Wu, Lifeng, 2020. "Predicting housing prices in China based on modified Holt's exponential smoothing incorporating whale optimization algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
- Ari, Didem & Mizrak Ozfirat, Pinar, 2024. "Comparison of artificial neural networks and regression analysis for airway passenger estimation," Journal of Air Transport Management, Elsevier, vol. 115(C).
- Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Ribeiro, Gabriel Trierweiler & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2023. "Cooperative ensemble learning model improves electric short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Büttner, Daniel & Scheidler, Anne Antonia & Rabe, Markus, 2021. "A reference model for data-driven sales planning: Development of the model's framework and functionality," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 441-476, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
- Amedeo Buonanno & Martina Caliano & Antonino Pontecorvo & Gianluca Sforza & Maria Valenti & Giorgio Graditi, 2022. "Global vs. Local Models for Short-Term Electricity Demand Prediction in a Residential/Lodging Scenario," Energies, MDPI, vol. 15(6), pages 1-18, March.
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- Juan D. Borrero & Jesús Mariscal & Alfonso Vargas-Sánchez, 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors," Stats, MDPI, vol. 5(4), pages 1-14, November.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Ahmad El Majzoub & Fethi A. Rabhi & Walayat Hussain, 2023. "Evaluating interpretable machine learning predictions for cryptocurrencies," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 30(3), pages 137-149, July.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
- Van Belle, Jente & Crevits, Ruben & Verbeke, Wouter, 2023. "Improving forecast stability using deep learning," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1333-1350.
- Heng, Jiani & Hong, Yongmiao & Hu, Jianming & Wang, Shouyang, 2022. "Probabilistic and deterministic wind speed forecasting based on non-parametric approaches and wind characteristics information," Applied Energy, Elsevier, vol. 306(PA).
- Fantazzini, Dean, 2020.
"Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
- Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," MPRA Paper 102315, University Library of Munich, Germany.
- Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
- Wenhui Zhao & Tong Li & Danyang Xu & Zhaohua Wang, 2024. "A global forecasting method of heterogeneous household short-term load based on pre-trained autoencoder and deep-LSTM model," Annals of Operations Research, Springer, vol. 339(1), pages 227-259, August.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023.
"Are low frequency macroeconomic variables important for high frequency electricity prices?,"
Economic Modelling, Elsevier, vol. 120(C).
- Claudia Foroni & Francesco Ravazzolo & Luca Rossini, 2020. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Papers 2007.13566, arXiv.org, revised Dec 2022.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Gaalman, Gerard & Disney, Stephen M. & Wang, Xun, 2022. "When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand," International Journal of Production Economics, Elsevier, vol. 250(C).
- Achterberg, Massimo A. & Prasse, Bastian & Ma, Long & Trajanovski, Stojan & Kitsak, Maksim & Van Mieghem, Piet, 2022. "Comparing the accuracy of several network-based COVID-19 prediction algorithms," International Journal of Forecasting, Elsevier, vol. 38(2), pages 489-504.
- Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
- Anton Gerunov, 2023. "Modern Approaches To Forecasting Firm Default Rates Over The Short To Medium Term: An Application To A Panel Of Polish Companies," Yearbook of the Faculty of Economics and Business Administration, Sofia University, Faculty of Economics and Business Administration, Sofia University St Kliment Ohridski - Bulgaria, vol. 22(1), pages 5-15, October.
- Hassani, Hossein & Beneki, Christina & Silva, Emmanuel Sirimal & Vandeput, Nicolas & Madsen, Dag Øivind, 2021. "The science of statistics versus data science: What is the future?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Filelis - Papadopoulos, Christos K. & Kyziropoulos, Panagiotis E. & Morrison, John P. & O‘Reilly, Philip, 2022. "Modelling and forecasting based on recursive incomplete pseudoinverse matrices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 358-376.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Berta, P. & Lovaglio, P.G. & Paruolo, P. & Verzillo, S., 2020.
"Real Time Forecasting of Covid-19 Intensive Care Units demand,"
Health, Econometrics and Data Group (HEDG) Working Papers
20/16, HEDG, c/o Department of Economics, University of York.
- Berta, Paolo & Lovaglio, Pietro Giorgio & Paruolo, Paolo & Verzillo, Stefano, 2020. "Real Time Forecasting of Covid-19 Intensive Care Units demand," JRC Working Papers in Economics and Finance 2020-08, Joint Research Centre, European Commission.
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Alroomi, Azzam & Karamatzanis, Georgios & Nikolopoulos, Konstantinos & Tilba, Anna & Xiao, Shujun, 2022. "Fathoming empirical forecasting competitions’ winners," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1519-1525.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Katsikopoulos, Konstantinos V. & Şimşek, Özgür & Buckmann, Marcus & Gigerenzer, Gerd, 2022. "Transparent modeling of influenza incidence: Big data or a single data point from psychological theory?," International Journal of Forecasting, Elsevier, vol. 38(2), pages 613-619.
- Doornik, Jurgen A. & Castle, Jennifer L. & Hendry, David F., 2022. "Short-term forecasting of the coronavirus pandemic," International Journal of Forecasting, Elsevier, vol. 38(2), pages 453-466.
- Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
- Jennifer Castle & Takamitsu Kurita, 2022. "Structural relationships between cryptocurrency prices and monetary policy indicators," Economics Series Working Papers 972, University of Oxford, Department of Economics.
- Diogo de Prince & Emerson Fernandes Marçal & Pedro L. Valls Pereira, 2022. "Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy," Econometrics, MDPI, vol. 10(2), pages 1-34, June.
- Alexandre Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2023.
"Satellites Turn “Concrete”: Tracking Cement with Satellite Data and Neural Networks,"
Working papers
916, Banque de France.
- d’Aspremont, Alexandre & Arous, Simon Ben & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2024. "Satellites turn “concrete”: tracking cement with satellite data and neural networks," Working Paper Series 2900, European Central Bank.
- Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Grossmann, Igor & Rotella, Amanda A. & Hutcherson, Cendri & Sharpinskyi, Konstantyn & Varnum, Michael E. W. & Achter, Sebastian K. & Dhami, Mandeep & Guo, Xinqi Evie & Kara-Yakoubian, Mane R. & Mandel, 2023. "Insights into the accuracy of social scientists' forecasts of societal change," Other publications TiSEM c14f4a4a-b105-46b3-90f7-f, Tilburg University, School of Economics and Management.
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Thabang Mathonsi & Terence L. van Zyl, 2021. "A Statistics and Deep Learning Hybrid Method for Multivariate Time Series Forecasting and Mortality Modeling," Forecasting, MDPI, vol. 4(1), pages 1-25, December.
- Ozancan Ozdemir & Ceylan Yozgatligil, 2024. "Forecasting performance of machine learning, time series, and hybrid methods for low‐ and high‐frequency time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 441-474, May.
- Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
- Carlos Cañizares Martínez & Gabe J. de Bondt & Arne Gieseck, 2023.
"Forecasting housing investment,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 543-565, April.
- Martínez, Carlos Cañizares & de Bondt, Gabe & Gieseck, Arne, 2023. "Forecasting housing investment," Working Paper Series 2807, European Central Bank.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Han Zheng & Junhua Chen & Zhaocha Huang & Kuan Yang & Jianhao Zhu, 2022. "Short-Term Online Forecasting for Passenger Origin–Destination (OD) Flows of Urban Rail Transit: A Graph–Temporal Fused Deep Learning Method," Mathematics, MDPI, vol. 10(19), pages 1-30, October.
- Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
- Planque, Benjamin & Aarflot, Johanna M. & Buttay, Lucie & Carroll, JoLynn & Fransner, Filippa & Hansen, Cecilie & Husson, Bérengère & Langangen, Øystein & Lindstrøm, Ulf & Pedersen, Torstein & Primice, 2022. "A standard protocol for describing the evaluation of ecological models," Ecological Modelling, Elsevier, vol. 471(C).
- Hounyo, Ulrich & Lahiri, Kajal, 2023.
"Estimating the variance of a combined forecast: Bootstrap-based approach,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
- Ulrich Hounyo & Kajal Lahiri, 2021. "Estimating the Variance of a Combined Forecast: Bootstrap-Based Approach," CREATES Research Papers 2021-14, Department of Economics and Business Economics, Aarhus University.
- Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
- Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
- Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
- Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Dong, Yingchao & Zhang, Hongli & Wang, Cong & Zhou, Xiaojun, 2021. "A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting," Applied Energy, Elsevier, vol. 286(C).
- Legaki, Nikoletta-Zampeta & Karpouzis, Kostas & Assimakopoulos, Vassilios & Hamari, Juho, 2021. "Gamification to avoid cognitive biases: An experiment of gamifying a forecasting course," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
- Yang, Haolin & Schell, Kristen R., 2021. "Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets," Applied Energy, Elsevier, vol. 299(C).
- Luca Berchicci & Murat Tarakci, 2022. "Aspiration formation and attention rules," Strategic Management Journal, Wiley Blackwell, vol. 43(8), pages 1575-1601, August.
- Roberto Casado-Vara & Angel Martin del Rey & Daniel Pérez-Palau & Luis de-la-Fuente-Valentín & Juan M. Corchado, 2021. "Web Traffic Time Series Forecasting Using LSTM Neural Networks with Distributed Asynchronous Training," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
- Branka Hadji Misheva & Joerg Osterrieder, 2023. "A Hypothesis on Good Practices for AI-based Systems for Financial Time Series Forecasting: Towards Domain-Driven XAI Methods," Papers 2311.07513, arXiv.org.
- Filip Staněk, 2023. "Optimal out‐of‐sample forecast evaluation under stationarity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2249-2279, December.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2024. "Forecasting the UK top 1% income share in a shifting world," Economica, London School of Economics and Political Science, vol. 91(363), pages 1047-1074, July.
- Jakub Horak & Tomas Krulicky & Zuzana Rowland & Veronika Machova, 2020. "Creating a Comprehensive Method for the Evaluation of a Company," Sustainability, MDPI, vol. 12(21), pages 1-23, November.
- Elalem, Yara Kayyali & Maier, Sebastian & Seifert, Ralf W., 2023. "A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1874-1894.
- Michael R. Johnson & Hiten Naik & Wei Siang Chan & Jesse Greiner & Matt Michaleski & Dong Liu & Bruno Silvestre & Ian P. McCarthy, 2023. "Forecasting ward-level bed requirements to aid pandemic resource planning: Lessons learned and future directions," Health Care Management Science, Springer, vol. 26(3), pages 477-500, September.
- Li, Xixi & Bai, Yun & Kang, Yanfei, 2022. "Exploring the social influence of the Kaggle virtual community on the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1507-1518.
- Lin, Jiahe & Michailidis, George, 2024. "A multi-task encoder-dual-decoder framework for mixed frequency data prediction," International Journal of Forecasting, Elsevier, vol. 40(3), pages 942-957.
- Juan D. Borrero & Jesus Mariscal, 2022. "Predicting Time SeriesUsing an Automatic New Algorithm of the Kalman Filter," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
- Ord, J. Keith, 2022. "The uncertainty track: Machine learning, statistical modeling, synthesis," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1526-1530.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Short-term forecasting of the Coronavirus Pandemic - 2020-04-27," Economics Papers 2020-W06, Economics Group, Nuffield College, University of Oxford.
- Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
- Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
- Philip Hans Franses, 2024. "Incorporating judgment in forecasting models in times of crisis," Futures & Foresight Science, John Wiley & Sons, vol. 6(4), December.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
- Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
- Zhen Zeng & Rachneet Kaur & Suchetha Siddagangappa & Saba Rahimi & Tucker Balch & Manuela Veloso, 2023. "Financial Time Series Forecasting using CNN and Transformer," Papers 2304.04912, arXiv.org.
- Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
- Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.
- Gonca Gürses-Tran & Antonello Monti, 2022. "Advances in Time Series Forecasting Development for Power Systems’ Operation with MLOps," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
- Anton A. Gerunov, 2022. "Performance of 109 Machine Learning Algorithms across Five Forecasting Tasks: Employee Behavior Modeling, Online Communication, House Pricing, IT Support and Demand Planning," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 15-43.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "The M5 competition: Background, organization, and implementation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1325-1336.
- Theodorou, Evangelos & Wang, Shengjie & Kang, Yanfei & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2022. "Exploring the representativeness of the M5 competition data," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1500-1506.
- Dag Tjøstheim & Martin Jullum & Anders Løland, 2023. "Some recent trends in embeddings of time series and dynamic networks," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 686-709, September.
- La Tona, G. & Luna, M. & Di Piazza, M.C., 2024. "Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 63-75.
- Waychal, Nachiketas & Laha, Arnab Kumar & Sinha, Ankur, 2022. "Customized forecasting with Adaptive Ensemble Generator," IIMA Working Papers WP 2022-06-04, Indian Institute of Management Ahmedabad, Research and Publication Department.