Predicting Time SeriesUsing an Automatic New Algorithm of the Kalman Filter
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Yongmei Fang & Bo Guan & Shangjuan Wu & Saeed Heravi, 2020. "Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 877-886, September.
- Harvey,Andrew C., 1991.
"Forecasting, Structural Time Series Models and the Kalman Filter,"
Cambridge Books,
Cambridge University Press, number 9780521405737, November.
- Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969, November.
- Alain Hecq & Joao Victor Issler & Sean Telg, 2020.
"Mixed causal–noncausal autoregressions with exogenous regressors,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 328-343, April.
- Hecq, Alain & Issler, João Victor & Telg, Sean, 2019. "Mixed causal-noncausal autoregressions with exogenous regressors," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 810, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
- Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
- Ewald, Christian & Zou, Yihan, 2021. "Analytic formulas for futures and options for a linear quadratic jump diffusion model with seasonal stochastic volatility and convenience yield: Do fish jump?," European Journal of Operational Research, Elsevier, vol. 294(2), pages 801-815.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
- Narci, Romain & Delattre, Maud & Larédo, Catherine & Vergu, Elisabeta, 2021. "Inference for partially observed epidemic dynamics guided by Kalman filtering techniques," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
- Mariya YANEVA, 2020. "The Impact of Cryptocurrencies on the Economy," CSIE Working Papers, Center for Studies in European Integration (CSEI), Academy of Economic Studies of Moldova (ASEM), issue 16, pages 113-118, December.
- Kepulaje Abhaya Kumar & Cristi Spulbar & Prakash Pinto & Iqbal Thonse Hawaldar & Ramona Birau & Jyeshtaraja Joisa, 2022. "Using Econometric Models to Manage the Price Risk of Cocoa Beans: A Case from India," Risks, MDPI, vol. 10(6), pages 1-18, June.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Zhenwei Li & Jing Han & Yuping Song, 2020. "On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1081-1097, November.
- Astrid Fliessbach & Rico Ihle, 2020. "Cycles in cattle and hog prices in South America," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1167-1183, October.
- Chen, Wei & Xu, Huilin & Jia, Lifen & Gao, Ying, 2021. "Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants," International Journal of Forecasting, Elsevier, vol. 37(1), pages 28-43.
- Piotr Bórawski & Marek Bartłomiej Bórawski & Andrzej Parzonko & Ludwik Wicki & Tomasz Rokicki & Aleksandra Perkowska & James William Dunn, 2021. "Development of Organic Milk Production in Poland on the Background of the EU," Agriculture, MDPI, vol. 11(4), pages 1-25, April.
- Taleb, Nassim Nicholas & Bar-Yam, Yaneer & Cirillo, Pasquale, 2022. "On single point forecasts for fat-tailed variables," International Journal of Forecasting, Elsevier, vol. 38(2), pages 413-422.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Juan D. Borrero & Jesús Mariscal & Alfonso Vargas-Sánchez, 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors," Stats, MDPI, vol. 5(4), pages 1-14, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Juan D. Borrero & Jesús Mariscal & Alfonso Vargas-Sánchez, 2022. "A New Predictive Algorithm for Time Series Forecasting Based on Machine Learning Techniques: Evidence for Decision Making in Agriculture and Tourism Sectors," Stats, MDPI, vol. 5(4), pages 1-14, November.
- Xiaojie Xu & Yun Zhang, 2022. "Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 169-181, July.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Alexandre Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2023.
"Satellites Turn “Concrete”: Tracking Cement with Satellite Data and Neural Networks,"
Working papers
916, Banque de France.
- d’Aspremont, Alexandre & Arous, Simon Ben & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2024. "Satellites turn “concrete”: tracking cement with satellite data and neural networks," Working Paper Series 2900, European Central Bank.
- Gianluca Cubadda, 2007.
"A Reduced Rank Regression Approach to Coincident and Leading Indexes Building,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 271-292, April.
- Cubadda, Gianluca, 2004. "A Reduced Rank Regression Approach to Coincident and Leading Indexes Building," Economics & Statistics Discussion Papers esdp04022, University of Molise, Department of Economics.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Michael D. Bauer & Glenn D. Rudebusch, 2020.
"Interest Rates under Falling Stars,"
American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
- Michael D. Bauer & Glenn D. Rudebusch, 2017. "Interest Rates Under Falling Stars," CESifo Working Paper Series 6571, CESifo.
- Michael D. Bauer & Glenn D. Rudebusch, 2019. "Interest Rates Under Falling Stars," Working Paper Series 2017-16, Federal Reserve Bank of San Francisco.
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Jorge Barrientos Marin & Elkin Tabares Orozco & Esteban Velilla, 2018. "Forecasting electricity price in Colombia: A comparison between Neural Network, ARMA process and Hybrid Models," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 97-106.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Fumio Hayashi & Yuta Tachi, 2023. "Nowcasting Japan’s GDP," Empirical Economics, Springer, vol. 64(4), pages 1699-1735, April.
- Carlos Cañizares Martínez & Gabe J. de Bondt & Arne Gieseck, 2023.
"Forecasting housing investment,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 543-565, April.
- Martínez, Carlos Cañizares & de Bondt, Gabe & Gieseck, Arne, 2023. "Forecasting housing investment," Working Paper Series 2807, European Central Bank.
- Daniel Aaronson & Scott A. Brave & Michael Fogarty & Ezra Karger & Spencer D. Krane, 2021. "Tracking U.S. Consumers in Real Time with a New Weekly Index of Retail Trade," Working Paper Series WP-2021-05, Federal Reserve Bank of Chicago, revised 18 Jun 2021.
- Xiaojie Xu & Yun Zhang, 2022. "Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network," Economics Bulletin, AccessEcon, vol. 42(3), pages 1266-1279.
- Krist'of N'emeth & D'aniel Hadh'azi, 2023. "GDP nowcasting with artificial neural networks: How much does long-term memory matter?," Papers 2304.05805, arXiv.org, revised Jan 2025.
- Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
More about this item
Keywords
time series; forecasting; econometrics; Kalman filter; state-space systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2915-:d:887295. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.