IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v34y2009i6p782-787.html
   My bibliography  Save this item

Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
  2. Visakhamoorthy, Sona & Wen, John Z. & Sivoththaman, Siva & Koch, Charles Robert, 2012. "Numerical study of a butanol/heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine utilizing negative valve overlap," Applied Energy, Elsevier, vol. 94(C), pages 166-173.
  3. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
  4. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
  5. Koupaie, Mohammadmohsen Moslemin & Cairns, Alasdair & Vafamehr, Hassan & Lanzanova, Thompson Diordinis Metzka, 2019. "A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine," Applied Energy, Elsevier, vol. 237(C), pages 258-269.
  6. Bahri, Bahram & Aziz, Azhar Abdul & Shahbakhti, Mahdi & Muhamad Said, Mohd Farid, 2013. "Understanding and detecting misfire in an HCCI engine fuelled with ethanol," Applied Energy, Elsevier, vol. 108(C), pages 24-33.
  7. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
  8. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  9. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
  10. Saxena, Samveg & Schneider, Silvan & Aceves, Salvador & Dibble, Robert, 2012. "Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels," Applied Energy, Elsevier, vol. 98(C), pages 448-457.
  11. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
  12. Gainey, Brian & Gohn, James & Hariharan, Deivanayagam & Rahimi-Boldaji, Mozhgan & Lawler, Benjamin, 2020. "Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol," Applied Energy, Elsevier, vol. 262(C).
  13. Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
  14. Brian Gainey & Ziming Yan & John Gandolfo & Benjamin Lawler, 2022. "High Load Compression Ignition of Wet Ethanol Using a Triple Injection Strategy," Energies, MDPI, vol. 15(10), pages 1-23, May.
  15. Liu, Yang & Tang, Chenglong & Zhan, Cheng & Wu, Yingtao & Yang, Meng & Huang, Zuohua, 2019. "Low temperature auto-ignition characteristics of methylcyclohexane/ethanol blend fuels: Ignition delay time measurement and kinetic analysis," Energy, Elsevier, vol. 177(C), pages 465-475.
  16. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
  17. Mayer, Flávio Dias & Feris, Liliana Amaral & Marcilio, Nilson Romeu & Hoffmann, Ronaldo, 2015. "Why small-scale fuel ethanol production in Brazil does not take off?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 687-701.
  18. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
  19. Sudheesh, K. & Mallikarjuna, J.M., 2010. "Diethyl ether as an ignition improver for biogas homogeneous charge compression ignition (HCCI) operation - An experimental investigation," Energy, Elsevier, vol. 35(9), pages 3614-3622.
  20. Albayrak Çeper, Bilge & Yıldız, Melih & Akansu, S. Orhan & Kahraman, Nafiz, 2017. "Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes," Energy, Elsevier, vol. 136(C), pages 72-79.
  21. Viggiano, Annarita & Magi, Vinicio, 2012. "A comprehensive investigation on the emissions of ethanol HCCI engines," Applied Energy, Elsevier, vol. 93(C), pages 277-287.
  22. Siddiqui, Mohd Asjad & Khaliq, Abdul & Kumar, Rajesh, 2021. "Proposal and analysis of a novel cooling-power cogeneration system driven by the exhaust gas heat of HCCI engine fuelled by wet-ethanol," Energy, Elsevier, vol. 232(C).
  23. Rahimi Boldaji, Mozhgan & Gainey, Brian & Lawler, Benjamin, 2019. "Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study," Applied Energy, Elsevier, vol. 235(C), pages 813-826.
  24. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
  25. Malça, João & Freire, Fausto, 2012. "Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol," Energy, Elsevier, vol. 45(1), pages 519-527.
  26. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
  27. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2019. "Performance studies on homogeneous charge compression ignition (HCCI) engine powered with alternative fuels," Renewable Energy, Elsevier, vol. 132(C), pages 683-693.
  28. Awad, Omar I. & Ali, Obed M. & Hammid, Ali Thaeer & Mamat, Rizalman, 2018. "Impact of fusel oil moisture reduction on the fuel properties and combustion characteristics of SI engine fueled with gasoline-fusel oil blends," Renewable Energy, Elsevier, vol. 123(C), pages 79-91.
  29. Saxena, Samveg & Vuilleumier, David & Kozarac, Darko & Krieck, Martin & Dibble, Robert & Aceves, Salvador, 2014. "Optimal operating conditions for wet ethanol in a HCCI engine using exhaust gas heat recovery," Applied Energy, Elsevier, vol. 116(C), pages 269-277.
  30. Visakhamoorthy, Sona & Tzanetakis, Tommy & Haggith, Dale & Sobiesiak, Andrzej & Wen, John Z., 2012. "Numerical study of a homogeneous charge compression ignition (HCCI) engine fueled with biogas," Applied Energy, Elsevier, vol. 92(C), pages 437-446.
  31. M. Mofijur & M.M. Hasan & T.M.I. Mahlia & S.M. Ashrafur Rahman & A.S. Silitonga & Hwai Chyuan Ong, 2019. "Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review," Energies, MDPI, vol. 12(18), pages 1-21, September.
  32. Chen, Yulin & Dong, Guangyu & Mack, J. Hunter & Butt, Ryan H. & Chen, Jyh-Yuan & Dibble, Robert W., 2016. "Cyclic variations and prior-cycle effects of ion current sensing in an HCCI engine: A time-series analysis," Applied Energy, Elsevier, vol. 168(C), pages 628-635.
  33. Yoon, S.-Y. & Han, S.-H. & Shin, S.-J., 2014. "The effect of hemicelluloses and lignin on acid hydrolysis of cellulose," Energy, Elsevier, vol. 77(C), pages 19-24.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.