IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp258-269.html
   My bibliography  Save this article

A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine

Author

Listed:
  • Koupaie, Mohammadmohsen Moslemin
  • Cairns, Alasdair
  • Vafamehr, Hassan
  • Lanzanova, Thompson Diordinis Metzka

Abstract

The aim of this experimental work was to improve understanding of the influence of hydrous ethanol on combustion in an engine demonstrating a tendency for biased flame migration towards the hotter exhaust walls as often reported for typical modern pent roof design IC engines. The work aimed to uncover the degree of residual water content that can be reasonably tolerated in terms of combustion characteristics in future ethanol SI engines (with the energy required to reduce water levels then potentially reduced). The experiments were performed in a single cylinder optical research engine equipped with a modern central direct injection combustion chamber and Bowditch type optical piston. Results were obtained under part-load engine operating conditions (selected to represent typical highway cruising conditions) with hydrous ethanol at 5%, 12% and 20% volume water. Baseline results were obtained using pure isooctane. High-speed cross-correlated particle image velocimetry was undertaken at 1500 rpm under motoring conditions with the intake plenum pressure set to 0.5 bar absolute. The horizontal imaging plane was fixed 10 mm below the combustion chamber “fire face”. Comparisons were made to CFD computations of the in-cylinder flow. Complimentary flame images were obtained via the “natural light” (chemiluminescence) technique over multiple engine cycles. The flame images revealed the tendency of an iso-octane fueled flame to migrate towards the exhaust side of the combustion chamber, with no complimentary bulk air motion apparent in this area in the horizontal imaging plane. The faster-burning ethanol offset this tendency of the flame to migrate towards the hotter exhaust walls. The fastest combustion rate occurred with pure ethanol, with higher water content (>5%) generally slowing down the flame speed rate to 10.64 m/s from 10.92 of ethanol and offsetting the flame speed/migration benefit (in good agreement with recent laminar burning velocity correlations for hydrous ethanol). When adding 20% water to ethanol the combustion rate was significantly slower (8.2 m/s) with a considerable increase in flame shape distortion as quantified by flame image shape factor values. The results demonstrate how the added water increases flame distortion and leads to higher flame centre displacement. Such flame centre displacement could potentially be offset in the future with a spark plug location biased further towards the intake side of the chamber (albeit sometimes practically constrained by the priorities given to intake valve sizing and local cooling jacket design). The results indicate that ethanol fuels offset such bias flame growth and allow residual water to be tolerated for an equivalent degree of biased flame migration. The implication is reduced fuel production energy and cost required to produce usable ethanol fuels.

Suggested Citation

  • Koupaie, Mohammadmohsen Moslemin & Cairns, Alasdair & Vafamehr, Hassan & Lanzanova, Thompson Diordinis Metzka, 2019. "A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine," Applied Energy, Elsevier, vol. 237(C), pages 258-269.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:258-269
    DOI: 10.1016/j.apenergy.2018.12.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918319111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahimi Boldaji, Mozhgan & Gainey, Brian & Lawler, Benjamin, 2019. "Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study," Applied Energy, Elsevier, vol. 235(C), pages 813-826.
    2. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    3. Lawler, Benjamin & Splitter, Derek & Szybist, James & Kaul, Brian, 2017. "Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility," Applied Energy, Elsevier, vol. 189(C), pages 122-132.
    4. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
    5. Mack, J. Hunter & Aceves, Salvador M. & Dibble, Robert W., 2009. "Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine," Energy, Elsevier, vol. 34(6), pages 782-787.
    6. Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
    7. Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaorong & Yan, Chenzhao & Zhang, Yan & Guo, Hongzhan & Xu, Cangsu & Jiang, Genzhu, 2024. "Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: Experimental and numerical analysis," Renewable Energy, Elsevier, vol. 227(C).
    2. Gainey, Brian & Gohn, James & Hariharan, Deivanayagam & Rahimi-Boldaji, Mozhgan & Lawler, Benjamin, 2020. "Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol," Applied Energy, Elsevier, vol. 262(C).
    3. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    4. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).
    6. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    8. Kim, Taehoon & Moon, Junghwan & Jeon, Joonho, 2023. "Characterization of in-cylinder spatiotemporal flame and solid particle emissions for ethanol-gasoline blended in gasoline direct injection engines," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    2. Gainey, Brian & Gohn, James & Hariharan, Deivanayagam & Rahimi-Boldaji, Mozhgan & Lawler, Benjamin, 2020. "Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol," Applied Energy, Elsevier, vol. 262(C).
    3. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Herz, Gregor & Rix, Christopher & Jacobasch, Eric & Müller, Nils & Reichelt, Erik & Jahn, Matthias & Michaelis, Alexander, 2021. "Economic assessment of Power-to-Liquid processes – Influence of electrolysis technology and operating conditions," Applied Energy, Elsevier, vol. 292(C).
    5. Rahimi Boldaji, Mozhgan & Gainey, Brian & Lawler, Benjamin, 2019. "Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study," Applied Energy, Elsevier, vol. 235(C), pages 813-826.
    6. Awad, Omar I. & Ali, Obed M. & Hammid, Ali Thaeer & Mamat, Rizalman, 2018. "Impact of fusel oil moisture reduction on the fuel properties and combustion characteristics of SI engine fueled with gasoline-fusel oil blends," Renewable Energy, Elsevier, vol. 123(C), pages 79-91.
    7. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    9. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    10. Stefania Esposito & Max Mally & Liming Cai & Heinz Pitsch & Stefan Pischinger, 2020. "Validation of a RANS 3D-CFD Gaseous Emission Model with Space-, Species-, and Cycle-Resolved Measurements from an SI DI Engine," Energies, MDPI, vol. 13(17), pages 1-19, August.
    11. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    12. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Shi, Weibo & Li, Zihang & Zhao, Zhe & Yu, Xiumin & Sun, Ping & Sang, Tao & Dong, Wei & Li, Ming, 2024. "A renewable clean energy application: Oxyhydrogen negative pressure inhalation for enhancing the combustion and emission characteristics of isopropanol/gasoline dual-fuel combined injection engine," Energy, Elsevier, vol. 290(C).
    14. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    15. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    16. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    18. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    20. Jhang, Syu-Ruei & Lin, Yuan-Chung & Chen, Kang-Shin & Lin, Sheng-Lun & Batterman, Stuart, 2020. "Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:258-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.