IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp782-802.html
   My bibliography  Save this article

Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review

Author

Listed:
  • Noh, Hyun Kwon
  • No, Soo-Young

Abstract

This review mainly concerns the use of bioethanol in advanced compression ignition (CI) engines. Various advanced CI engines are in existence, and this review discusses, homogeneous charge compression ignition (HCCI) combustion, partially premixed combustion (PPC) and gasoline compression ignition (GCI) combustion for discussion. Four different experimental configurations were adopted to measure the autoignition or ignition delay time for ethanol in HCCI combustion mode. The mixture formation strategies in bioethanol HCCI combustion can be categorized into three groups: external, internal and combined mixture preparations. The external mixture preparation is subdivided into port fuel injection and a vaporizer, and the internal mixture preparation into early, late and multiple direct injections. A numerical simulation for ethanol HCCI combustion was recently carried out with a direct numerical simulation and large eddy simulation. The different reduced chemical kinetic mechanisms for ethanol oxidation models present in the literature are summarized in detail. Detailed mechanisms including 57 species and 383 reactions were employed in numerical simulations of ethanol HCCI combustion.

Suggested Citation

  • Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:782-802
    DOI: 10.1016/j.apenergy.2017.09.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viggiano, Annarita & Magi, Vinicio, 2014. "Dynamic Adaptive Chemistry applied to homogeneous and partially stratified charge CI ethanol engines," Applied Energy, Elsevier, vol. 113(C), pages 848-863.
    2. Komninos, N.P. & Rakopoulos, C.D., 2012. "Modeling HCCI combustion of biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1588-1610.
    3. Mack, J. Hunter & Aceves, Salvador M. & Dibble, Robert W., 2009. "Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine," Energy, Elsevier, vol. 34(6), pages 782-787.
    4. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    5. Tsolakis, A. & Megaritis, A. & Yap, D., 2008. "Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels," Energy, Elsevier, vol. 33(3), pages 462-470.
    6. Bahri, Bahram & Aziz, Azhar Abdul & Shahbakhti, Mahdi & Muhamad Said, Mohd Farid, 2013. "Understanding and detecting misfire in an HCCI engine fuelled with ethanol," Applied Energy, Elsevier, vol. 108(C), pages 24-33.
    7. Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2012. "Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique," Applied Energy, Elsevier, vol. 99(C), pages 116-125.
    8. Viggiano, Annarita & Magi, Vinicio, 2012. "A comprehensive investigation on the emissions of ethanol HCCI engines," Applied Energy, Elsevier, vol. 93(C), pages 277-287.
    9. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
    10. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    11. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    12. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    13. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    14. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    15. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    16. Saxena, Samveg & Schneider, Silvan & Aceves, Salvador & Dibble, Robert, 2012. "Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels," Applied Energy, Elsevier, vol. 98(C), pages 448-457.
    17. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    18. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    19. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    20. Saxena, Samveg & Vuilleumier, David & Kozarac, Darko & Krieck, Martin & Dibble, Robert & Aceves, Salvador, 2014. "Optimal operating conditions for wet ethanol in a HCCI engine using exhaust gas heat recovery," Applied Energy, Elsevier, vol. 116(C), pages 269-277.
    21. Megaritis, A. & Yap, D. & Wyszynski, M.L., 2007. "Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping," Energy, Elsevier, vol. 32(12), pages 2396-2400.
    22. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    23. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novella, Ricardo & García, Antonio & Gomez-Soriano, Josep & Fogué-Robles, Álvaro, 2023. "Exploring dilution potential for full load operation of medium duty hydrogen engine for the transport sector," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Bendu, Harisankar & Deepak, B.B.V.L. & Murugan, S., 2017. "Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO," Applied Energy, Elsevier, vol. 187(C), pages 601-611.
    3. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    4. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    5. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    6. Kumar, Pravin & Rehman, A., 2016. "Bio-diesel in homogeneous charge compression ignition (HCCI) combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 536-550.
    7. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    8. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    9. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    10. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    11. Neshat, Elaheh & Saray, Rahim Khoshbakhti & Hosseini, Vahid, 2016. "Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism," Applied Energy, Elsevier, vol. 179(C), pages 463-478.
    12. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    13. M. Mofijur & M.M. Hasan & T.M.I. Mahlia & S.M. Ashrafur Rahman & A.S. Silitonga & Hwai Chyuan Ong, 2019. "Performance and Emission Parameters of Homogeneous Charge Compression Ignition (HCCI) Engine: A Review," Energies, MDPI, vol. 12(18), pages 1-21, September.
    14. Bahri, Bahram & Aziz, Azhar Abdul & Shahbakhti, Mahdi & Muhamad Said, Mohd Farid, 2013. "Understanding and detecting misfire in an HCCI engine fuelled with ethanol," Applied Energy, Elsevier, vol. 108(C), pages 24-33.
    15. Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
    16. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    18. Rahimi Boldaji, Mozhgan & Gainey, Brian & Lawler, Benjamin, 2019. "Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study," Applied Energy, Elsevier, vol. 235(C), pages 813-826.
    19. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
    20. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:782-802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.