IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v136y2017icp72-79.html
   My bibliography  Save this article

Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes

Author

Listed:
  • Albayrak Çeper, Bilge
  • Yıldız, Melih
  • Akansu, S. Orhan
  • Kahraman, Nafiz

Abstract

Controlled auto ignition (CAI) or, also known homogenous compressed ignition, is an advanced combustion technology allowing a lower NOx emission and fuel consumption that can relieve the energy demand based on petroleum. The objective of this study is to determine the effects of spark ignition (SI), spark assist controlled auto ignition (SI-CAI) and pure CAI combustion modes on the performance and emissions in a modified IC engine. For this purpose, the emissions, performance, and heat release analyses for these combustion modes were obtained at two different engine speeds (1500–2000 rpm) and various excess air ratio (EAR) in the range of 1.0–1.3 with 0.1 increments for both wide open throttle (WOT) and 50% opening throttle positions. The results showed that CAI combustion mode produced lower NOx emissions, although it resulted in higher CO and HC emission than those under SI and SI-CAI combustion modes. In addition, brake mean effective pressures (BMEP) were obtained as higher values under SI-CAI combustion mode. Therefore, SI-CAI combustion mode provided a wider operational range than that of the CAI combustion mode. However, the SI-CAI combustion modes resulted in high NOx emissions, but relatively lower values than those under SI combustion mode.

Suggested Citation

  • Albayrak Çeper, Bilge & Yıldız, Melih & Akansu, S. Orhan & Kahraman, Nafiz, 2017. "Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes," Energy, Elsevier, vol. 136(C), pages 72-79.
  • Handle: RePEc:eee:energy:v:136:y:2017:i:c:p:72-79
    DOI: 10.1016/j.energy.2016.08.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216311513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    2. Cho, Gyubaek & Jeong, Dongsoo & Moon, Gunfeel & Bae, Choongsik, 2010. "Controlled auto-ignition characteristics of methane–air mixture in a rapid intake compression and expansion machine," Energy, Elsevier, vol. 35(10), pages 4184-4191.
    3. Mack, J. Hunter & Aceves, Salvador M. & Dibble, Robert W., 2009. "Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine," Energy, Elsevier, vol. 34(6), pages 782-787.
    4. Shi, Lei & Cui, Yi & Deng, Kangyao & Peng, Haiyong & Chen, Yuanyuan, 2006. "Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR)," Energy, Elsevier, vol. 31(14), pages 2665-2676.
    5. Megaritis, A. & Yap, D. & Wyszynski, M.L., 2007. "Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping," Energy, Elsevier, vol. 32(12), pages 2396-2400.
    6. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    7. Liu, Mao-Bin & He, Bang-Quan & Zhao, Hua, 2015. "Effect of air dilution and effective compression ratio on the combustion characteristics of a HCCI (homogeneous charge compression ignition) engine fuelled with n-butanol," Energy, Elsevier, vol. 85(C), pages 296-303.
    8. Machrafi, Hatim & Cavadias, Simeon & Amouroux, Jacques, 2008. "A parametric study on the emissions from an HCCI alternative combustion engine resulting from the auto-ignition of primary reference fuels," Applied Energy, Elsevier, vol. 85(8), pages 755-764, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    2. Altın, İsmail & Bilgin, Atilla & Çeper, Bilge Albayrak, 2017. "Parametric study on some combustion characteristics in a natural gas fueled dual plug SI engine," Energy, Elsevier, vol. 139(C), pages 1237-1242.
    3. Chen, Zaiwang & Cai, Yikang & Xu, Guangfu & Duan, Huiquan & Jia, Ming, 2022. "Exploring the potential of water injection (WI) in a high-load diesel engine under different fuel injection strategies," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    3. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    4. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    5. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    6. Cho, Gyubaek & Jeong, Dongsoo & Moon, Gunfeel & Bae, Choongsik, 2010. "Controlled auto-ignition characteristics of methane–air mixture in a rapid intake compression and expansion machine," Energy, Elsevier, vol. 35(10), pages 4184-4191.
    7. Viggiano, Annarita & Magi, Vinicio, 2012. "A comprehensive investigation on the emissions of ethanol HCCI engines," Applied Energy, Elsevier, vol. 93(C), pages 277-287.
    8. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    9. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    10. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    11. Wu, Horng-Wen & Wang, Ren-Hung & Ou, Dung-Je & Chen, Ying-Chuan & Chen, Teng-yu, 2011. "Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air," Applied Energy, Elsevier, vol. 88(11), pages 3882-3890.
    12. Saxena, Samveg & Schneider, Silvan & Aceves, Salvador & Dibble, Robert, 2012. "Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels," Applied Energy, Elsevier, vol. 98(C), pages 448-457.
    13. Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
    14. Visakhamoorthy, Sona & Wen, John Z. & Sivoththaman, Siva & Koch, Charles Robert, 2012. "Numerical study of a butanol/heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine utilizing negative valve overlap," Applied Energy, Elsevier, vol. 94(C), pages 166-173.
    15. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Yang, Binbin & Yao, Mingfa & Cheng, Wai K. & Li, Yu & Zheng, Zunqing & Li, Shanju, 2014. "Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel," Applied Energy, Elsevier, vol. 113(C), pages 722-733.
    17. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    18. Lee, Kyeonghyeon & Cho, Seokwon & Kim, Namho & Min, Kyoungdoug, 2015. "A study on combustion control and operating range expansion of gasoline HCCI," Energy, Elsevier, vol. 91(C), pages 1038-1048.
    19. Sudheesh, K. & Mallikarjuna, J.M., 2010. "Diethyl ether as an ignition improver for biogas homogeneous charge compression ignition (HCCI) operation - An experimental investigation," Energy, Elsevier, vol. 35(9), pages 3614-3622.
    20. Rahimi Boldaji, Mozhgan & Gainey, Brian & Lawler, Benjamin, 2019. "Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study," Applied Energy, Elsevier, vol. 235(C), pages 813-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:136:y:2017:i:c:p:72-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.