IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v123y2018icp79-91.html
   My bibliography  Save this article

Impact of fusel oil moisture reduction on the fuel properties and combustion characteristics of SI engine fueled with gasoline-fusel oil blends

Author

Listed:
  • Awad, Omar I.
  • Ali, Obed M.
  • Hammid, Ali Thaeer
  • Mamat, Rizalman

Abstract

In this study, statistical analysis was used to reveal the significant relation between fuel properties and the reduction of moisture contents at a various fraction of fusel oil in the blend. In addition to this, it is also aimed to conduct a comparative study on the effect of the fuel properties on the combustion characteristics before and after moisture extraction from fusel oil. The moisture content of fusel oil was extracted by employing rotary extractor method, and the fuels were tested in an SI engine under different open throttle valve position (load) and 4500 rpm speed of the engine. As a result, the heating value and carbon content improved significantly after extracting the moisture content from fusel oil by 13% and 7% respectively. According to the statistical analysis of test fuel properties results, the heating value, oxygen, and carbon content have statistically significant effects on the test fuels as the fraction of fusel oil increased especially after moisture extraction. Furthermore, the brake power and BSFC observed to be improved by extracting the moisture content with shorter combustion durations. Almost all fusel oil-gasoline blends have lower COV IMEP at all engine loads compared to pure gasoline.

Suggested Citation

  • Awad, Omar I. & Ali, Obed M. & Hammid, Ali Thaeer & Mamat, Rizalman, 2018. "Impact of fusel oil moisture reduction on the fuel properties and combustion characteristics of SI engine fueled with gasoline-fusel oil blends," Renewable Energy, Elsevier, vol. 123(C), pages 79-91.
  • Handle: RePEc:eee:renene:v:123:y:2018:i:c:p:79-91
    DOI: 10.1016/j.renene.2018.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mack, J. Hunter & Aceves, Salvador M. & Dibble, Robert W., 2009. "Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine," Energy, Elsevier, vol. 34(6), pages 782-787.
    2. Megaritis, A. & Yap, D. & Wyszynski, M.L., 2007. "Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping," Energy, Elsevier, vol. 32(12), pages 2396-2400.
    3. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
    4. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    5. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    6. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Szymlet & Łukasz Rymaniak & Beata Kurc, 2024. "Chromatographic Analysis of the Chemical Composition of Exhaust Gas Samples from Urban Two-Wheeled Vehicles," Energies, MDPI, vol. 17(3), pages 1-17, February.
    2. Dong, Lei & Tao, Junyu & Zhang, Zhaoling & Yan, Beibei & Cheng, Zhanjun & Chen, Guanyi, 2021. "Energy utilization and disposal of herb residue by an integrated energy conversion system: A pilot scale study," Energy, Elsevier, vol. 215(PB).
    3. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    4. Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
    5. Seyfi Polat & Alper Calam & Seyed Mohammad Safieddin Ardebili & Fatih Şahin & Alexandru Andrei Boroiu & Hamit Solmaz, 2022. "Operating Range, Performance and Emissions of an HCCI Engine Fueled with Fusel Oil/Diethyl Ether: An Experimental Study," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Martins, Mario Eduardo Santos & Machado, Paulo Romeu Moreira & Pedrozo, Vinícius Bernardes & Zhao, Hua, 2019. "The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fuelled with wet ethanol," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    3. Wang, Xiaochen & Gao, Jianbing & Chen, Zhanming & Chen, Hao & Zhao, Yuwei & Huang, Yuhan & Chen, Zhenbin, 2022. "Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review," Renewable Energy, Elsevier, vol. 194(C), pages 504-525.
    4. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    5. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    6. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    8. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    9. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    11. Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
    12. Albayrak Çeper, Bilge & Yıldız, Melih & Akansu, S. Orhan & Kahraman, Nafiz, 2017. "Performance and emission characteristics of an IC engine under SI, SI-CAI and CAI combustion modes," Energy, Elsevier, vol. 136(C), pages 72-79.
    13. Morganti, Kai & Al-Abdullah, Marwan & Alzubail, Abdullah & Kalghatgi, Gautam & Viollet, Yoann & Head, Robert & Khan, Ahmad & Abdul-Manan, Amir, 2017. "Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenhouse Gas Emissions," Applied Energy, Elsevier, vol. 208(C), pages 1538-1561.
    14. Awad, Omar I. & Mamat, Rizalman & Ibrahim, Thamir K. & Kettner, Maurice & Kadirgama, K. & Leman, A.M. & Saiful, A.I.M., 2018. "Effects of fusel oil water content reduction on fuel properties, performance and emissions of SI engine fueled with gasoline -fusel oil blends," Renewable Energy, Elsevier, vol. 118(C), pages 858-869.
    15. Rahimi Boldaji, Mozhgan & Gainey, Brian & Lawler, Benjamin, 2019. "Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study," Applied Energy, Elsevier, vol. 235(C), pages 813-826.
    16. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    17. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    18. Koupaie, Mohammadmohsen Moslemin & Cairns, Alasdair & Vafamehr, Hassan & Lanzanova, Thompson Diordinis Metzka, 2019. "A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine," Applied Energy, Elsevier, vol. 237(C), pages 258-269.
    19. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
    20. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:123:y:2018:i:c:p:79-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.