IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v197y2020ics0360544220304047.html
   My bibliography  Save this item

Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  2. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
  3. Daeil Lee & Seoryong Koo & Inseok Jang & Jonghyun Kim, 2022. "Comparison of Deep Reinforcement Learning and PID Controllers for Automatic Cold Shutdown Operation," Energies, MDPI, vol. 15(8), pages 1-25, April.
  4. Chengqing, Yu & Guangxi, Yan & Chengming, Yu & Yu, Zhang & Xiwei, Mi, 2023. "A multi-factor driven spatiotemporal wind power prediction model based on ensemble deep graph attention reinforcement learning networks," Energy, Elsevier, vol. 263(PE).
  5. Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
  6. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
  7. Zhang, Junjiang & Feng, Ganghui & Yan, Xianghai & He, Yundong & Liu, Mengnan & Xu, Liyou, 2024. "Cooperative control method considering efficiency and tracking performance for unmanned hybrid tractor based on rotary tillage prediction," Energy, Elsevier, vol. 288(C).
  8. Zhengyu Yao & Hwan-Sik Yoon & Yang-Ki Hong, 2023. "Control of Hybrid Electric Vehicle Powertrain Using Offline-Online Hybrid Reinforcement Learning," Energies, MDPI, vol. 16(2), pages 1-18, January.
  9. Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
  10. Niu, Junyan & Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Zhang, Yuanjian, 2022. "Optimal sizing and learning-based energy management strategy of NCR/LTO hybrid battery system for electric taxis," Energy, Elsevier, vol. 257(C).
  11. Zhou, Jianhao & Xue, Yuan & Xu, Da & Li, Chaoxiong & Zhao, Wanzhong, 2022. "Self-learning energy management strategy for hybrid electric vehicle via curiosity-inspired asynchronous deep reinforcement learning," Energy, Elsevier, vol. 242(C).
  12. Peng, Jiankun & Shen, Yang & Wu, ChangCheng & Wang, Chunhai & Yi, Fengyan & Ma, Chunye, 2023. "Research on energy-saving driving control of hydrogen fuel bus based on deep reinforcement learning in freeway ramp weaving area," Energy, Elsevier, vol. 285(C).
  13. Tang, Xiaolin & Zhou, Haitao & Wang, Feng & Wang, Weida & Lin, Xianke, 2022. "Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning," Energy, Elsevier, vol. 238(PA).
  14. Zhang, Yahui & Wang, Zimeng & Tian, Yang & Wang, Zhong & Kang, Mingxin & Xie, Fangxi & Wen, Guilin, 2024. "Pre-optimization-assisted deep reinforcement learning-based energy management strategy for a series–parallel hybrid electric truck," Energy, Elsevier, vol. 302(C).
  15. Kunyu Wang & Rong Yang & Yongjian Zhou & Wei Huang & Song Zhang, 2022. "Design and Improvement of SD3-Based Energy Management Strategy for a Hybrid Electric Urban Bus," Energies, MDPI, vol. 15(16), pages 1-21, August.
  16. Gao, Qinxiang & Lei, Tao & Yao, Wenli & Zhang, Xingyu & Zhang, Xiaobin, 2023. "A health-aware energy management strategy for fuel cell hybrid electric UAVs based on safe reinforcement learning," Energy, Elsevier, vol. 283(C).
  17. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
  18. Liu, Yonggang & Wu, Yitao & Wang, Xiangyu & Li, Liang & Zhang, Yuanjian & Chen, Zheng, 2023. "Energy management for hybrid electric vehicles based on imitation reinforcement learning," Energy, Elsevier, vol. 263(PC).
  19. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
  20. Han, Lijin & Yang, Ke & Ma, Tian & Yang, Ningkang & Liu, Hui & Guo, Lingxiong, 2022. "Battery life constrained real-time energy management strategy for hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 259(C).
  21. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
  22. Qi, Chunyang & Song, Chuanxue & Xiao, Feng & Song, Shixin, 2022. "Generalization ability of hybrid electric vehicle energy management strategy based on reinforcement learning method," Energy, Elsevier, vol. 250(C).
  23. Min, Dehao & Song, Zhen & Chen, Huicui & Wang, Tianxiang & Zhang, Tong, 2022. "Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition," Applied Energy, Elsevier, vol. 306(PB).
  24. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
  25. Yang, Ningkang & Ruan, Shumin & Han, Lijin & Liu, Hui & Guo, Lingxiong & Xiang, Changle, 2023. "Reinforcement learning-based real-time intelligent energy management for hybrid electric vehicles in a model predictive control framework," Energy, Elsevier, vol. 270(C).
  26. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
  27. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
  28. Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).
  29. Wang, Yaxin & Lou, Diming & Xu, Ning & Fang, Liang & Tan, Piqiang, 2021. "Energy management and emission control for range extended electric vehicles," Energy, Elsevier, vol. 236(C).
  30. Wei, Zhengchao & Ma, Yue & Yang, Ningkang & Ruan, Shumin & Xiang, Changle, 2023. "Reinforcement learning based power management integrating economic rotational speed of turboshaft engine and safety constraints of battery for hybrid electric power system," Energy, Elsevier, vol. 263(PB).
  31. Connor Scott & Mominul Ahsan & Alhussein Albarbar, 2021. "Machine Learning Based Vehicle to Grid Strategy for Improving the Energy Performance of Public Buildings," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
  32. Robert Jane & Tae Young Kim & Samantha Rose & Emily Glass & Emilee Mossman & Corey James, 2022. "Developing AI/ML Based Predictive Capabilities for a Compression Ignition Engine Using Pseudo Dynamometer Data," Energies, MDPI, vol. 15(21), pages 1-49, October.
  33. Eva Andrés & Manuel Pegalajar Cuéllar & Gabriel Navarro, 2022. "On the Use of Quantum Reinforcement Learning in Energy-Efficiency Scenarios," Energies, MDPI, vol. 15(16), pages 1-24, August.
  34. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  35. Ruan, Jiageng & Wu, Changcheng & Liang, Zhaowen & Liu, Kai & Li, Bin & Li, Weihan & Li, Tongyang, 2023. "The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode," Energy, Elsevier, vol. 269(C).
  36. Wu, Changcheng & Ruan, Jiageng & Cui, Hanghang & Zhang, Bin & Li, Tongyang & Zhang, Kaixuan, 2023. "The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid ," Energy, Elsevier, vol. 262(PB).
  37. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  38. Han, Yongming & Li, Jingze & Lou, Xiaoyi & Fan, Chenyu & Geng, Zhiqiang, 2022. "Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient," Applied Energy, Elsevier, vol. 309(C).
  39. Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
  40. Liu, Bo & Sun, Chao & Wang, Bo & Liang, Weiqiang & Ren, Qiang & Li, Junqiu & Sun, Fengchun, 2022. "Bi-level convex optimization of eco-driving for connected Fuel Cell Hybrid Electric Vehicles through signalized intersections," Energy, Elsevier, vol. 252(C).
  41. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
  42. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
  43. Fuwu Yan & Jinhai Wang & Changqing Du & Min Hua, 2022. "Multi-Objective Energy Management Strategy for Hybrid Electric Vehicles Based on TD3 with Non-Parametric Reward Function," Energies, MDPI, vol. 16(1), pages 1-17, December.
  44. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  45. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
  46. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
  47. Lin Li & Serdar Coskun & Jiaze Wang & Youming Fan & Fengqi Zhang & Reza Langari, 2021. "Velocity Prediction Based on Vehicle Lateral Risk Assessment and Traffic Flow: A Brief Review and Application Examples," Energies, MDPI, vol. 14(12), pages 1-30, June.
  48. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
  49. Xiao, Boyi & Yang, Weiwei & Wu, Jiamin & Walker, Paul D. & Zhang, Nong, 2022. "Energy management strategy via maximum entropy reinforcement learning for an extended range logistics vehicle," Energy, Elsevier, vol. 253(C).
  50. Tao, Fazhan & Fu, Zhigao & Gong, Huixian & Ji, Baofeng & Zhou, Yao, 2023. "Twin delayed deep deterministic policy gradient based energy management strategy for fuel cell/battery/ultracapacitor hybrid electric vehicles considering predicted terrain information," Energy, Elsevier, vol. 283(C).
  51. Wei, Xiaodong & Wang, Jiaqi & Sun, Chao & Liu, Bo & Huo, Weiwei & Sun, Fengchun, 2023. "Guided control for plug-in fuel cell hybrid electric vehicles via vehicle to traffic communication," Energy, Elsevier, vol. 267(C).
  52. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  53. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
  54. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
  55. Bing Liu & Bowen Xu & Tong He & Wei Yu & Fanghong Guo, 2022. "Hybrid Deep Reinforcement Learning Considering Discrete-Continuous Action Spaces for Real-Time Energy Management in More Electric Aircraft," Energies, MDPI, vol. 15(17), pages 1-21, August.
  56. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
  57. Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
  58. Guangli Zhou & Fei Huang & Wenbing Liu & Chunling Zhao & Yangkai Xiang & Hanbing Wei, 2022. "Comprehensive Control Strategy of Fuel Consumption and Emissions Incorporating the Catalyst Temperature for PHEVs Based on DRL," Energies, MDPI, vol. 15(20), pages 1-18, October.
  59. Li, Shuangqi & He, Hongwen & Zhao, Pengfei, 2021. "Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective," Energy, Elsevier, vol. 230(C).
  60. Kunang Li & Chunchun Jia & Xuefeng Han & Hongwen He, 2023. "A Novel Minimal-Cost Power Allocation Strategy for Fuel Cell Hybrid Buses Based on Deep Reinforcement Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
  61. Li, Jiawen & Yu, Tao & Yang, Bo, 2021. "A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
  62. Kong, Yan & Xu, Nan & Liu, Qiao & Sui, Yan & Yue, Fenglai, 2023. "A data-driven energy management method for parallel PHEVs based on action dependent heuristic dynamic programming (ADHDP) model," Energy, Elsevier, vol. 265(C).
  63. Li, Jie & Wu, Xiaodong & Xu, Min & Liu, Yonggang, 2022. "Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections," Energy, Elsevier, vol. 251(C).
  64. Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
  65. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.