IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221023719.html
   My bibliography  Save this article

Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment

Author

Listed:
  • Chen, Jiaxin
  • Shu, Hong
  • Tang, Xiaolin
  • Liu, Teng
  • Wang, Weida

Abstract

Aiming at promoting the intelligent development of control technology for new energy vehicles and showing the outstanding advantages of deep reinforcement learning (DRL), this paper trained a VGG16-based road recognition convolutional neural network (CNN) at first. Lots of high-definition images of five typical roads are collected by the racing game Dust Rally 2.0, including dry asphalt, wet asphalt, snow, dry cobblestone, and wet cobblestone. Then, a time-varying driving environment model was established, involving driving images, road slope, longitudinal speed, and the number of passengers. Finally, a stereoscopic control network suitable for nine-dimensional state space and three-dimensional action space was built, and for parallel hybrid electric vehicles (HEVs) with the P3 structure, a deep q-network (DQN)-based energy management strategy (EMS) achieving multi-objective control was proposed, including the fine-tuning strategy of the motor speed to maintain the optimal slip rate during braking, the engine power control strategy and the continuously variable transmission (CVT) gear ratio control strategy. Simulation results show under the influence of some factors such as tree shade and image compression, the road recognition network has the highest accuracy for snow roads and wet asphalt roads. Three types of control strategies learned simultaneously by the stereoscopic control network not only maintain the near-optimal slip rate in the braking period but also achieve a fuel consumption of 4788.93 g, while dynamic programming (DP)-based EMS gets a fuel consumption of 4295.61 g. Moreover, even DP-based EMS only contains three states and two actions, the time consumed for DP-based EMS and DQN-based EMS to run the speed cycle of 3602s is about 4911s and 10s, respectively. Therefore, the optimization and real-time performance of DRL-based EMS can be guaranteed.

Suggested Citation

  • Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221023719
    DOI: 10.1016/j.energy.2021.122123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    2. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    3. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    4. Li, Weihan & Cui, Han & Nemeth, Thomas & Jansen, Jonathan & Ünlübayir, Cem & Wei, Zhongbao & Feng, Xuning & Han, Xuebing & Ouyang, Minggao & Dai, Haifeng & Wei, Xuezhe & Sauer, Dirk Uwe, 2021. "Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning," Applied Energy, Elsevier, vol. 293(C).
    5. Hu, Xiaosong & Zhang, Xiaoqian & Tang, Xiaolin & Lin, Xianke, 2020. "Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios," Energy, Elsevier, vol. 196(C).
    6. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    7. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    8. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Tang, Xiaolin & Lang, Kun & Xin, Zongke & Brighton, James, 2019. "Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge," Energy, Elsevier, vol. 173(C), pages 667-678.
    9. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    10. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    12. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    13. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    14. Li, Yuecheng & He, Hongwen & Khajepour, Amir & Wang, Hong & Peng, Jiankun, 2019. "Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    2. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
    3. Li, Cheng & Xu, Xiangyang & Zhu, Helong & Gan, Jiongpeng & Chen, Zhige & Tang, Xiaolin, 2024. "Research on car-following control and energy management strategy of hybrid electric vehicles in connected scene," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    3. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    4. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    5. Han, Jie & Liu, Wenxue & Zheng, Yusheng & Khalatbarisoltani, Arash & Yang, Yalian & Hu, Xiaosong, 2023. "Health-conscious predictive energy management strategy with hybrid speed predictor for plug-in hybrid electric vehicles: Investigating the impact of battery electro-thermal-aging models," Applied Energy, Elsevier, vol. 352(C).
    6. Tao, Fazhan & Fu, Zhigao & Gong, Huixian & Ji, Baofeng & Zhou, Yao, 2023. "Twin delayed deep deterministic policy gradient based energy management strategy for fuel cell/battery/ultracapacitor hybrid electric vehicles considering predicted terrain information," Energy, Elsevier, vol. 283(C).
    7. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    9. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    10. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    11. Alessia Musa & Pier Giuseppe Anselma & Giovanni Belingardi & Daniela Anna Misul, 2023. "Energy Management in Hybrid Electric Vehicles: A Q-Learning Solution for Enhanced Drivability and Energy Efficiency," Energies, MDPI, vol. 17(1), pages 1-20, December.
    12. Wu, Yitao & Zhang, Yuanjian & Li, Guang & Shen, Jiangwei & Chen, Zheng & Liu, Yonggang, 2020. "A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks," Energy, Elsevier, vol. 208(C).
    13. Qi, Chunyang & Song, Chuanxue & Xiao, Feng & Song, Shixin, 2022. "Generalization ability of hybrid electric vehicle energy management strategy based on reinforcement learning method," Energy, Elsevier, vol. 250(C).
    14. Tang, Xiaolin & Zhou, Haitao & Wang, Feng & Wang, Weida & Lin, Xianke, 2022. "Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning," Energy, Elsevier, vol. 238(PA).
    15. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    16. Li, Jie & Wu, Xiaodong & Xu, Min & Liu, Yonggang, 2022. "Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections," Energy, Elsevier, vol. 251(C).
    17. Wang, Hao & He, Hongwen & Bai, Yunfei & Yue, Hongwei, 2022. "Parameterized deep Q-network based energy management with balanced energy economy and battery life for hybrid electric vehicles," Applied Energy, Elsevier, vol. 320(C).
    18. Huang, Yin & Kang, Zehao & Mao, Xuping & Hu, Haoqin & Tan, Jiaqi & Xuan, Dongji, 2023. "Deep reinforcement learning based energymanagement strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 283(C).
    19. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    20. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221023719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.