The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid mode
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125084
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
- Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
- Ximing Wang & Hongwen He & Fengchun Sun & Xiaokun Sun & Henglu Tang, 2013. "Comparative Study on Different Energy Management Strategies for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 6(11), pages 1-20, October.
- Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
- Zou, Yuan & Liu, Teng & Liu, Dexing & Sun, Fengchun, 2016. "Reinforcement learning-based real-time energy management for a hybrid tracked vehicle," Applied Energy, Elsevier, vol. 171(C), pages 372-382.
- Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
- Han, Xuefeng & He, Hongwen & Wu, Jingda & Peng, Jiankun & Li, Yuecheng, 2019. "Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 254(C).
- Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.
- Jinquan, Guo & Hongwen, He & Jiankun, Peng & Nana, Zhou, 2019. "A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 175(C), pages 378-392.
- Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruan, Jiageng & Wu, Changcheng & Liang, Zhaowen & Liu, Kai & Li, Bin & Li, Weihan & Li, Tongyang, 2023. "The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode," Energy, Elsevier, vol. 269(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
- Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
- Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
- Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Ruan, Jiageng & Wu, Changcheng & Liang, Zhaowen & Liu, Kai & Li, Bin & Li, Weihan & Li, Tongyang, 2023. "The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode," Energy, Elsevier, vol. 269(C).
- Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
- He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
- Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
- Shi, Wenzhuo & Huangfu, Yigeng & Xu, Liangcai & Pang, Shengzhao, 2022. "Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 328(C).
- Zhou, Jianhao & Xue, Yuan & Xu, Da & Li, Chaoxiong & Zhao, Wanzhong, 2022. "Self-learning energy management strategy for hybrid electric vehicle via curiosity-inspired asynchronous deep reinforcement learning," Energy, Elsevier, vol. 242(C).
- Yang, Ningkang & Ruan, Shumin & Han, Lijin & Liu, Hui & Guo, Lingxiong & Xiang, Changle, 2023. "Reinforcement learning-based real-time intelligent energy management for hybrid electric vehicles in a model predictive control framework," Energy, Elsevier, vol. 270(C).
- Alessia Musa & Pier Giuseppe Anselma & Giovanni Belingardi & Daniela Anna Misul, 2023. "Energy Management in Hybrid Electric Vehicles: A Q-Learning Solution for Enhanced Drivability and Energy Efficiency," Energies, MDPI, vol. 17(1), pages 1-20, December.
- Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
- Wei, Changyin & Chen, Yong & Li, Xiaoyu & Lin, Xiaozhe, 2022. "Integrating intelligent driving pattern recognition with adaptive energy management strategy for extender range electric logistics vehicle," Energy, Elsevier, vol. 247(C).
- Han, Lijin & Yang, Ke & Ma, Tian & Yang, Ningkang & Liu, Hui & Guo, Lingxiong, 2022. "Battery life constrained real-time energy management strategy for hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 259(C).
- Fuwu Yan & Jinhai Wang & Changqing Du & Min Hua, 2022. "Multi-Objective Energy Management Strategy for Hybrid Electric Vehicles Based on TD3 with Non-Parametric Reward Function," Energies, MDPI, vol. 16(1), pages 1-17, December.
- Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
More about this item
Keywords
TD3; DDPG; Gumbel-softmax; Energy management strategy; Mode control mechanism;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s036054422201979x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.