IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019779.html
   My bibliography  Save this article

Type- and task-crossing energy management for fuel cell vehicles with longevity consideration: A heterogeneous deep transfer reinforcement learning framework

Author

Listed:
  • Huang, Ruchen
  • He, Hongwen
  • Su, Qicong
  • Härtl, Martin
  • Jaensch, Malte

Abstract

The recent advancements in artificial intelligence have promoted deep reinforcement learning (DRL) as the preferred method for developing energy management strategies (EMSs) for fuel cell vehicles (FCVs). However, the development of DRL-based EMSs is a time-consuming process, requiring repetitive training when encountering different vehicle types or learning tasks. To surmount this technical barrier, this paper develops a transferable EMS rooted in heterogeneous deep transfer reinforcement learning (DTRL) across both FCV types and optimization tasks. Firstly, a simple source EMS based on the soft actor-critic (SAC) algorithm is pre-trained for a fuel cell sedan, solely focusing on hydrogen saving. After that, a heterogeneous DTRL framework is developed by integrating SAC with transfer learning, through which both heterogeneous deep neural networks and experience replay buffers can be transferred. Subsequently, the source EMS is transferred to the target new EMS of a fuel cell bus (FCB) to be reused, with additional consideration of the fuel cell (FC) longevity. Experimental simulations reveal that the heterogeneous DTRL framework expedites the development of the new EMS for FCB by 90.28 %. Moreover, the new EMS achieves a 7.93 % reduction in hydrogen consumption and suppresses FC degradation by 63.21 %. By correlating different energy management tasks of FCVs, this article both expedites the development and facilitates the generalized application of DRL-based EMSs.

Suggested Citation

  • Huang, Ruchen & He, Hongwen & Su, Qicong & Härtl, Martin & Jaensch, Malte, 2025. "Type- and task-crossing energy management for fuel cell vehicles with longevity consideration: A heterogeneous deep transfer reinforcement learning framework," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019779
    DOI: 10.1016/j.apenergy.2024.124594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.