IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs0306261921013313.html
   My bibliography  Save this article

Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition

Author

Listed:
  • Min, Dehao
  • Song, Zhen
  • Chen, Huicui
  • Wang, Tianxiang
  • Zhang, Tong

Abstract

Because of its high efficiency, no emission, low noise and many other advantages, proton exchange membrane fuel cell is considered to be able to be applied in automobiles to replace the traditional internal combustion engine. In order to improve the lifespan of fuel cell, the design of energy management strategy becomes the focus of research. This paper addresses the energy management strategy of fuel cell hybrid electric vehicle- fuel cell as the main power source, battery as the auxiliary power source. Existing researches are summarized and a new algorithm is proposed. As frequent startup, shutdown and rapid load change can reduce the lifespan of fuel cell, it is necessary to avoid this situation as far as possible. For this purpose, the reported work proposes Neural Network Optimized by Genetic Algorithm (NNOGA) as an effective strategy of the studied system. Through the optimization of genetic algorithm, the neural network can be trained pertinently, and the trained network can consciously avoid specific outputs according to the requirements. With the help of the optimization ability of Neural Network Optimized by Genetic Algorithm, which can change the preference of the trained neural network, the network can consciously avoid unnecessary start-stop and fast load change. Therefore, lifespan of fuel cell is prolonged. Simulation and comparative experiments verify the validity of the proposed algorithm.

Suggested Citation

  • Min, Dehao & Song, Zhen & Chen, Huicui & Wang, Tianxiang & Zhang, Tong, 2022. "Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013313
    DOI: 10.1016/j.apenergy.2021.118036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    2. Wu, Yitao & Zhang, Yuanjian & Li, Guang & Shen, Jiangwei & Chen, Zheng & Liu, Yonggang, 2020. "A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks," Energy, Elsevier, vol. 208(C).
    3. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    4. Zhang, Bo & Lin, Fei & Zhang, Caizhi & Liao, Ruiyue & Wang, Ya-Xiong, 2020. "Design and implementation of model predictive control for an open-cathode fuel cell thermal management system," Renewable Energy, Elsevier, vol. 154(C), pages 1014-1024.
    5. Wang, Xuechao & Chen, Jinzhou & Quan, Shengwei & Wang, Ya-Xiong & He, Hongwen, 2020. "Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells," Applied Energy, Elsevier, vol. 276(C).
    6. Song, Ke & Wang, Xiaodi & Li, Feiqiang & Sorrentino, Marco & Zheng, Bailin, 2020. "Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability," Energy, Elsevier, vol. 205(C).
    7. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoodabadi, M.J., 2023. "An optimal robust fuzzy adaptive integral sliding mode controller based upon a multi-objective grey wolf optimization algorithm for a nonlinear uncertain chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Lyu, Chenghao & Zhang, Yuchen & Bai, Yilin & Yang, Kun & Song, Zhengxiang & Ma, Yuhang & Meng, Jinhao, 2024. "Inner-outer layer co-optimization of sizing and energy management for renewable energy microgrid with storage," Applied Energy, Elsevier, vol. 363(C).
    3. Li, Xian-zhe & Zhang, Ming-zhu & Yan, Xiang-hai & Liu, Meng-nan & Xu, Li-you, 2023. "Power allocation strategy for fuel cell distributed drive electric tractor based on adaptive multi-resolution analysis theory," Energy, Elsevier, vol. 284(C).
    4. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).
    7. Chang, Chengcheng & Zhao, Wanzhong & Wang, Chunyan & Luan, Zhongkai, 2023. "An energy management strategy of deep reinforcement learning based on multi-agent architecture under self-generating conditions," Energy, Elsevier, vol. 283(C).
    8. Wang, Pengfei & Zhu, Ze & Liang, Wenlong & Liao, Longtao & Wan, Jiashuang, 2023. "Hybrid mechanistic and neural network modeling of nuclear reactors," Energy, Elsevier, vol. 282(C).
    9. Mubashir Rasool & Muhammad Adil Khan & Runmin Zou, 2023. "A Comprehensive Analysis of Online and Offline Energy Management Approaches for Optimal Performance of Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-33, April.
    10. Tian, Weiyong & Liu, Li & Zhang, Xiaohui & Shao, Jiaqi, 2024. "Flight trajectory and energy management coupled optimization for hybrid electric UAVs with adaptive sequential convex programming method," Applied Energy, Elsevier, vol. 364(C).
    11. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    12. Alessandro Ferrara & Saeid Zendegan & Hans-Michael Koegeler & Sajin Gopi & Martin Huber & Johannes Pell & Christoph Hametner, 2022. "Optimal Calibration of an Adaptive and Predictive Energy Management Strategy for Fuel Cell Electric Trucks," Energies, MDPI, vol. 15(7), pages 1-20, March.
    13. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    14. Aissa Benhammou & Hamza Tedjini & Mohammed Amine Hartani & Rania M. Ghoniem & Ali Alahmer, 2023. "Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    15. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    16. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    17. Seydali Ferahtia & Hegazy Rezk & Rania M. Ghoniem & Ahmed Fathy & Reem Alkanhel & Mohamed M. Ghonem, 2023. "Optimal Energy Management for Hydrogen Economy in a Hybrid Electric Vehicle," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    18. Yang Shen & Jiaming Zhou & Jinming Zhang & Fengyan Yi & Guofeng Wang & Chaofeng Pan & Wei Guo & Xing Shu, 2023. "Research on Energy Management of Hydrogen Fuel Cell Bus Based on Deep Reinforcement Learning Considering Velocity Control," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    19. Abdullah Aljumah & Ahmed Darwish & Denes Csala & Peter Twigg, 2024. "A Review on the Allocation of Sustainable Distributed Generators with Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 16(15), pages 1-17, July.
    20. Fan, Likang & Wang, Jun & Peng, Yiqiang & Sun, Hongwei & Bao, Xiuchao & Zeng, Baoquan & Wei, Hongqian, 2024. "Real-time energy management strategy with dynamically updating equivalence factor for through-the-road (TTR) hybrid vehicles," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bo & Sun, Chao & Wang, Bo & Liang, Weiqiang & Ren, Qiang & Li, Junqiu & Sun, Fengchun, 2022. "Bi-level convex optimization of eco-driving for connected Fuel Cell Hybrid Electric Vehicles through signalized intersections," Energy, Elsevier, vol. 252(C).
    2. Liu, Yonggang & Wu, Yitao & Wang, Xiangyu & Li, Liang & Zhang, Yuanjian & Chen, Zheng, 2023. "Energy management for hybrid electric vehicles based on imitation reinforcement learning," Energy, Elsevier, vol. 263(PC).
    3. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    4. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    5. Yang Gao & Changhong Liu & Yuan Liang & Sadegh Kouhestani Hamed & Fuwei Wang & Bo Bi, 2022. "Minimizing Energy Consumption and Powertrain Cost of Fuel Cell Hybrid Vehicles with Consideration of Different Driving Cycles and SOC Ranges," Energies, MDPI, vol. 15(17), pages 1-12, August.
    6. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    7. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    8. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    10. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    11. Liu, Zhaoming & Chang, Guofeng & Yuan, Hao & Tang, Wei & Xie, Jiaping & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive look-ahead model predictive control strategy of vehicular PEMFC thermal management," Energy, Elsevier, vol. 285(C).
    12. Gao, Qinxiang & Lei, Tao & Yao, Wenli & Zhang, Xingyu & Zhang, Xiaobin, 2023. "A health-aware energy management strategy for fuel cell hybrid electric UAVs based on safe reinforcement learning," Energy, Elsevier, vol. 283(C).
    13. Guo, Ningyuan & Zhang, Wencan & Li, Junqiu & Chen, Zheng & Li, Jianwei & Sun, Chao, 2024. "Predictive energy management of fuel cell plug-in hybrid electric vehicles: A co-state boundaries-oriented PMP optimization approach," Applied Energy, Elsevier, vol. 362(C).
    14. Xiao Hu & Shikun Liu & Ke Song & Yuan Gao & Tong Zhang, 2021. "Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health," Energies, MDPI, vol. 14(20), pages 1-20, October.
    15. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    16. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Guo, Lingxiong & Liu, Hui & Han, Lijin & Yang, Ningkang & Liu, Rui & Xiang, Changle, 2023. "Predictive energy management strategy of dual-mode hybrid electric vehicles combining dynamic coordination control and simultaneous power distribution," Energy, Elsevier, vol. 263(PA).
    18. Peng, Jiankun & Shen, Yang & Wu, ChangCheng & Wang, Chunhai & Yi, Fengyan & Ma, Chunye, 2023. "Research on energy-saving driving control of hydrogen fuel bus based on deep reinforcement learning in freeway ramp weaving area," Energy, Elsevier, vol. 285(C).
    19. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation," Applied Energy, Elsevier, vol. 304(C).
    20. Wei, Zhengchao & Ma, Yue & Yang, Ningkang & Ruan, Shumin & Xiang, Changle, 2023. "Reinforcement learning based power management integrating economic rotational speed of turboshaft engine and safety constraints of battery for hybrid electric power system," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921013313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.