IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224021418.html
   My bibliography  Save this article

A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles

Author

Listed:
  • Tan, Yingqi
  • Xu, Jingyi
  • Ma, Junyi
  • Li, Zirui
  • Chen, Huiyan
  • Xi, Junqiang
  • Liu, Haiou

Abstract

This work investigates the optimal energy allocation considering the different road properties for a series hybrid electric unmanned tracked vehicle. Tracked vehicles operate mostly in off-road conditions, where the energy consumption changes heavily due to the road smoothness. However, few works considered the effect of explicit road properties on energy allocation for tracked vehicles. Besides, conventional energy management strategies are generally difficult to adapt to the fast-changing off-road conditions. To address these challenges, a perception-guided energy management strategy based on deep reinforcement learning that takes road roughness as explicit features into account is proposed. A method of road roughness extraction and quantification is proposed based on the random sample consensus algorithm and singular value decomposition. To enhance the deployment efficiency in different off-road driving conditions, a deep transfer learning framework of the proposed perception-guided energy management strategy is devised. Experimental results demonstrate that the perception-guided energy management strategy improved the fuel economy by 8.15 %. Moreover, the transferable energy management strategy achieves a convergence rate of 34.15 % better than the relearned energy management strategy. Our code is available at https://github.com/BIT-XJY/PgEMS.

Suggested Citation

  • Tan, Yingqi & Xu, Jingyi & Ma, Junyi & Li, Zirui & Chen, Huiyan & Xi, Junqiang & Liu, Haiou, 2024. "A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021418
    DOI: 10.1016/j.energy.2024.132367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.