IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224021418.html
   My bibliography  Save this article

A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles

Author

Listed:
  • Tan, Yingqi
  • Xu, Jingyi
  • Ma, Junyi
  • Li, Zirui
  • Chen, Huiyan
  • Xi, Junqiang
  • Liu, Haiou

Abstract

This work investigates the optimal energy allocation considering the different road properties for a series hybrid electric unmanned tracked vehicle. Tracked vehicles operate mostly in off-road conditions, where the energy consumption changes heavily due to the road smoothness. However, few works considered the effect of explicit road properties on energy allocation for tracked vehicles. Besides, conventional energy management strategies are generally difficult to adapt to the fast-changing off-road conditions. To address these challenges, a perception-guided energy management strategy based on deep reinforcement learning that takes road roughness as explicit features into account is proposed. A method of road roughness extraction and quantification is proposed based on the random sample consensus algorithm and singular value decomposition. To enhance the deployment efficiency in different off-road driving conditions, a deep transfer learning framework of the proposed perception-guided energy management strategy is devised. Experimental results demonstrate that the perception-guided energy management strategy improved the fuel economy by 8.15 %. Moreover, the transferable energy management strategy achieves a convergence rate of 34.15 % better than the relearned energy management strategy. Our code is available at https://github.com/BIT-XJY/PgEMS.

Suggested Citation

  • Tan, Yingqi & Xu, Jingyi & Ma, Junyi & Li, Zirui & Chen, Huiyan & Xi, Junqiang & Liu, Haiou, 2024. "A transferable perception-guided EMS for series hybrid electric unmanned tracked vehicles," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021418
    DOI: 10.1016/j.energy.2024.132367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    2. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
    4. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    5. Sun, Xilei & Fu, Jianqin & Yang, Huiyong & Xie, Mingke & Liu, Jingping, 2023. "An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control," Energy, Elsevier, vol. 269(C).
    6. Wang, Hanchen & Ye, Yiming & Zhang, Jiangfeng & Xu, Bin, 2023. "A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle," Energy, Elsevier, vol. 266(C).
    7. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
    8. Zhang, Kaixuan & Ruan, Jiageng & Li, Tongyang & Cui, Hanghang & Wu, Changcheng, 2023. "The effects investigation of data-driven fitting cycle and deep deterministic policy gradient algorithm on energy management strategy of dual-motor electric bus," Energy, Elsevier, vol. 269(C).
    9. Ferrero, Enrico & Alessandrini, Stefano & Balanzino, Alessia, 2016. "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, Elsevier, vol. 169(C), pages 450-459.
    10. Yang, Ningkang & Han, Lijin & Bo, Lin & Liu, Baoshuai & Chen, Xiuqi & Liu, Hui & Xiang, Changle, 2023. "Real-time adaptive energy management for off-road hybrid electric vehicles based on decision-time planning," Energy, Elsevier, vol. 282(C).
    11. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    12. Li, Yuecheng & He, Hongwen & Khajepour, Amir & Wang, Hong & Peng, Jiankun, 2019. "Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information," Applied Energy, Elsevier, vol. 255(C).
    13. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    2. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    3. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Xiao, Boyi & Yang, Weiwei & Wu, Jiamin & Walker, Paul D. & Zhang, Nong, 2022. "Energy management strategy via maximum entropy reinforcement learning for an extended range logistics vehicle," Energy, Elsevier, vol. 253(C).
    5. Peng, Jiankun & Shen, Yang & Wu, ChangCheng & Wang, Chunhai & Yi, Fengyan & Ma, Chunye, 2023. "Research on energy-saving driving control of hydrogen fuel bus based on deep reinforcement learning in freeway ramp weaving area," Energy, Elsevier, vol. 285(C).
    6. Huang, Yin & Kang, Zehao & Mao, Xuping & Hu, Haoqin & Tan, Jiaqi & Xuan, Dongji, 2023. "Deep reinforcement learning based energymanagement strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 283(C).
    7. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
    8. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    9. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    10. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    11. Huang, Xuejin & Zhang, Jingyi & Ou, Kai & Huang, Yin & Kang, Zehao & Mao, Xuping & Zhou, Yujie & Xuan, Dongji, 2024. "Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework," Energy, Elsevier, vol. 304(C).
    12. Hu, Dong & Xie, Hui & Song, Kang & Zhang, Yuanyuan & Yan, Long, 2023. "An apprenticeship-reinforcement learning scheme based on expert demonstrations for energy management strategy of hybrid electric vehicles," Applied Energy, Elsevier, vol. 342(C).
    13. Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).
    14. Zhang, Yahui & Wang, Zimeng & Tian, Yang & Wang, Zhong & Kang, Mingxin & Xie, Fangxi & Wen, Guilin, 2024. "Pre-optimization-assisted deep reinforcement learning-based energy management strategy for a series–parallel hybrid electric truck," Energy, Elsevier, vol. 302(C).
    15. Ruan, Jiageng & Wu, Changcheng & Liang, Zhaowen & Liu, Kai & Li, Bin & Li, Weihan & Li, Tongyang, 2023. "The application of machine learning-based energy management strategy in a multi-mode plug-in hybrid electric vehicle, part II: Deep deterministic policy gradient algorithm design for electric mode," Energy, Elsevier, vol. 269(C).
    16. Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
    17. Huang, Ruchen & He, Hongwen & Su, Qicong, 2024. "Smart energy management for hybrid electric bus via improved soft actor-critic algorithm in a heuristic learning framework," Energy, Elsevier, vol. 309(C).
    18. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    19. Feng, Zhiyan & Zhang, Qingang & Zhang, Yiming & Fei, Liangyu & Jiang, Fei & Zhao, Shengdun, 2024. "Practicability analysis of online deep reinforcement learning towards energy management strategy of 4WD-BEVs driven by dual-motor in-wheel motors," Energy, Elsevier, vol. 290(C).
    20. Zhou, Jianhao & Xue, Siwu & Xue, Yuan & Liao, Yuhui & Liu, Jun & Zhao, Wanzhong, 2021. "A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.