IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006861.html
   My bibliography  Save this article

Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources

Author

Listed:
  • Yin, Linfei
  • Lu, Yuejiang

Abstract

The article establishes a three-state energy (TSE) model for flexible energy sources (FESs) connected to smart grids. The article proposes a unified time-scale (UTS) coordinated primary voltage control framework and a UTS coordinated primary voltage controller for voltage control of smart grids containing a high proportion of FESs. To mitigate uncoordinated voltage, the proposed control framework integrates traditional secondary and primary voltage control into a UTS. The article proposes an expandable deep width learning (EDWL) for the proposed controller. The proposed controller applies the EDWL for predictive control; the proposed controller outputs the reactive power reference value of each TSE unit in smart grids with the real-time voltages of smart grids pilot buses. The proposed algorithm is numerically simulated with the proportional-integral-derivative (PID) algorithm and deep neural networks (DNNs) in IEEE 118-bus, 300-bus, 1354-bus, and 2383-bus systems. The simulation results show that the proposed framework and controller can quickly and accurately control the grid voltage, and verify the feasibility and effectiveness of the proposed approach. The integral of squared error control performance index is 0.47% smaller than the PID and 0.06% smaller than DNNs.

Suggested Citation

  • Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006861
    DOI: 10.1016/j.energy.2021.120437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    2. Kou, Peng & Liang, Deliang & Wang, Chen & Wu, Zihao & Gao, Lin, 2020. "Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks," Applied Energy, Elsevier, vol. 264(C).
    3. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    4. Yin, Linfei & Gao, Qi & Zhao, Lulin & Wang, Tao, 2020. "Expandable deep learning for real-time economic generation dispatch and control of three-state energies based future smart grids," Energy, Elsevier, vol. 191(C).
    5. Wang, Xuan & Wang, Rui & Jin, Ming & Shu, Gequn & Tian, Hua & Pan, Jiaying, 2020. "Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    6. Pavão, Leandro V. & Miranda, Camila B. & Costa, Caliane B.B. & Ravagnani, Mauro A.S.S., 2018. "Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach," Energy, Elsevier, vol. 142(C), pages 356-372.
    7. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    8. Gandhi, Oktoviano & Rodríguez-Gallegos, Carlos D. & Zhang, Wenjie & Srinivasan, Dipti & Reindl, Thomas, 2018. "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 827-841.
    9. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    10. Shuai, Zhikang & Fang, Junbin & Ning, Fenggen & Shen, Z. John, 2018. "Hierarchical structure and bus voltage control of DC microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3670-3682.
    11. Wang, Shuoqi & Lu, Languang & Han, Xuebing & Ouyang, Minggao & Feng, Xuning, 2020. "Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station," Applied Energy, Elsevier, vol. 259(C).
    12. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    13. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    14. Kang, Wenfa & Chen, Minyou & Lai, Wei & Luo, Yanyu, 2021. "Distributed real-time power management for virtual energy storage systems using dynamic price," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    2. Wang, Qi & Yang, Li & Huang, Kang, 2022. "Fast prediction and sensitivity analysis of gas turbine cooling performance using supervised learning approaches," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    2. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
    3. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    4. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    5. Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
    6. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
    7. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Li, Jie & Wu, Xiaodong & Xu, Min & Liu, Yonggang, 2022. "Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections," Energy, Elsevier, vol. 251(C).
    9. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    10. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    13. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    14. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    15. Teng, Sin Yong & Orosz, Ákos & How, Bing Shen & Jansen, Jeroen J. & Friedler, Ferenc, 2023. "Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping," Energy, Elsevier, vol. 283(C).
    16. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    17. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    18. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    19. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    20. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.