IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924022153.html
   My bibliography  Save this article

Imitation reinforcement learning energy management for electric vehicles with hybrid energy storage system

Author

Listed:
  • Liu, Weirong
  • Yao, Pengfei
  • Wu, Yue
  • Duan, Lijun
  • Li, Heng
  • Peng, Jun

Abstract

Deep reinforcement learning has become a promising method for the energy management of electric vehicles. However, deep reinforcement learning relies on a large amount of trial-and-error training to acquire near-optimal performance. An adversarial imitation reinforcement learning energy management strategy is proposed for electric vehicles with hybrid energy storage system to minimize the cost of battery capacity loss. Firstly, the reinforcement learning exploration is guided by expert knowledge, which is generated by dynamic programming under various standard driving conditions. The expert knowledge is represented as the optimal power allocation mapping. Secondly, at the early imitation stage, the action of the reinforcement learning agent approaches the optimal power allocation mapping rapidly by using adversarial networks. Thirdly, a dynamic imitation weight is developed according to the Discriminator of adversarial networks, making the agent transit to self-explore the near-optimal power allocation under online driving conditions. Results demonstrate that the proposed strategy can accelerate the training by 42.60% while enhancing the reward by 15.79% compared with traditional reinforcement learning. Under different test driving cycles, the proposed method can further reduce the battery capacity loss cost by 5.1%–12.4%.

Suggested Citation

  • Liu, Weirong & Yao, Pengfei & Wu, Yue & Duan, Lijun & Li, Heng & Peng, Jun, 2025. "Imitation reinforcement learning energy management for electric vehicles with hybrid energy storage system," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022153
    DOI: 10.1016/j.apenergy.2024.124832
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.