Comparison of Deep Reinforcement Learning and PID Controllers for Automatic Cold Shutdown Operation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
- Yang, Jaemin & Kim, Jonghyun, 2020. "Accident diagnosis algorithm with untrained accident identification during power-increasing operation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
- Kazmi, Hussain & Mehmood, Fahad & Lodeweyckx, Stefan & Driesen, Johan, 2018. "Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning based optimal control of hot water systems," Energy, Elsevier, vol. 144(C), pages 159-168.
- Rocchetta, R. & Bellani, L. & Compare, M. & Zio, E. & Patelli, E., 2019. "A reinforcement learning framework for optimal operation and maintenance of power grids," Applied Energy, Elsevier, vol. 241(C), pages 291-301.
- Aitor Saenz-Aguirre & Ekaitz Zulueta & Unai Fernandez-Gamiz & Javier Lozano & Jose Manuel Lopez-Guede, 2019. "Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control," Energies, MDPI, vol. 12(3), pages 1-17, January.
- Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abidur Rahman Sagor & Md Abu Talha & Shameem Ahmad & Tofael Ahmed & Mohammad Rafiqul Alam & Md. Rifat Hazari & G. M. Shafiullah, 2024. "Pelican Optimization Algorithm-Based Proportional–Integral–Derivative Controller for Superior Frequency Regulation in Interconnected Multi-Area Power Generating System," Energies, MDPI, vol. 17(13), pages 1-24, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
- Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
- Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
- Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
- Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
- Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
- Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
- Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
- Robert Jane & Tae Young Kim & Samantha Rose & Emily Glass & Emilee Mossman & Corey James, 2022. "Developing AI/ML Based Predictive Capabilities for a Compression Ignition Engine Using Pseudo Dynamometer Data," Energies, MDPI, vol. 15(21), pages 1-49, October.
- Yang, Dongpo & Liu, Tong & Song, Dafeng & Zhang, Xuanming & Zeng, Xiaohua, 2023. "A real time multi-objective optimization Guided-MPC strategy for power-split hybrid electric bus based on velocity prediction," Energy, Elsevier, vol. 276(C).
- Zhengyu Yao & Hwan-Sik Yoon & Yang-Ki Hong, 2023. "Control of Hybrid Electric Vehicle Powertrain Using Offline-Online Hybrid Reinforcement Learning," Energies, MDPI, vol. 16(2), pages 1-18, January.
- Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
- Li, Shuangqi & He, Hongwen & Zhao, Pengfei, 2021. "Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective," Energy, Elsevier, vol. 230(C).
- Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
- Yao, Yongming & Wang, Jie & Zhou, Zhicong & Li, Hang & Liu, Huiying & Li, Tianyu, 2023. "Grey Markov prediction-based hierarchical model predictive control energy management for fuel cell/battery hybrid unmanned aerial vehicles," Energy, Elsevier, vol. 262(PA).
- Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
- Kong, Yan & Xu, Nan & Liu, Qiao & Sui, Yan & Yue, Fenglai, 2023. "A data-driven energy management method for parallel PHEVs based on action dependent heuristic dynamic programming (ADHDP) model," Energy, Elsevier, vol. 265(C).
- Liu, Bo & Sun, Chao & Wang, Bo & Liang, Weiqiang & Ren, Qiang & Li, Junqiu & Sun, Fengchun, 2022. "Bi-level convex optimization of eco-driving for connected Fuel Cell Hybrid Electric Vehicles through signalized intersections," Energy, Elsevier, vol. 252(C).
More about this item
Keywords
nuclear power plant; autonomous operation; artificial intelligence; deep reinforcement learning; soft actor-critic algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2834-:d:792850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.