IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027713.html
   My bibliography  Save this article

Reinforcement learning model for incentive-based integrated demand response considering demand-side coupling

Author

Listed:
  • Hu, Rong
  • Zhou, Kaile
  • Yin, Hui

Abstract

Incentive-based integrated demand response has great potential in addressing supply-demand imbalance in integrated energy system. This study first proposes an incentive-based integrated demand response model based on multi-agent reinforcement learning, to deal with the multi energy coupling on the demand-side and enhance the applicability of the incentive-based demand response program in urban integrated energy system. Then, a self-adaptive method is proposed based on consumer energy consumption behavior, which utilizes nonlinear incentive strategy to encourage consumers to provide more demand response resources. Finally, the experimental results show that considering demand-side coupling can enhance the overall benefits of incentive-based integrated demand response, achieving a win-win situation between integrated energy service provider and consumers. After implementing incentive strategy that considers demand-side coupling, profit of integrated energy service provider increased by 16.27% and the discomfort costs borne by integrated energy consumers reduced by 11.5%. This study offers a promising approach to managing the complex and variable energy consumption behaviors in urban integrated energy system, contributing to more reliable and efficient operation of urban integrated energy system.

Suggested Citation

  • Hu, Rong & Zhou, Kaile & Yin, Hui, 2024. "Reinforcement learning model for incentive-based integrated demand response considering demand-side coupling," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027713
    DOI: 10.1016/j.energy.2024.132997
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    2. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    3. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    4. Zeng, Lanting & Qiu, Dawei & Sun, Mingyang, 2022. "Resilience enhancement of multi-agent reinforcement learning-based demand response against adversarial attacks," Applied Energy, Elsevier, vol. 324(C).
    5. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    6. Mota, Bruno & Faria, Pedro & Vale, Zita, 2022. "Residential load shifting in demand response events for bill reduction using a genetic algorithm," Energy, Elsevier, vol. 260(C).
    7. Liu, Di & Qin, Zhaoming & Hua, Haochen & Ding, Yi & Cao, Junwei, 2023. "Incremental incentive mechanism design for diversified consumers in demand response," Applied Energy, Elsevier, vol. 329(C).
    8. Pan, Chongchao & Jin, Tai & Li, Na & Wang, Guanxiong & Hou, Xiaowang & Gu, Yueqing, 2023. "Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses," Energy, Elsevier, vol. 270(C).
    9. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
    10. Zhaohua Wang & Bin Lu & Bo Wang & Yueming (Lucy) Qiu & Han Shi & Bin Zhang & Jingyun Li & Hao Li & Wenhui Zhao, 2023. "Incentive based emergency demand response effectively reduces peak load during heatwave without harm to vulnerable groups," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    12. Li, Peng & Wang, Zixuan & Wang, Jiahao & Yang, Weihong & Guo, Tianyu & Yin, Yunxing, 2021. "Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response," Energy, Elsevier, vol. 225(C).
    13. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    14. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    15. Raman, Gururaghav & Zhao, Bo & Peng, Jimmy Chih-Hsien & Weidlich, Matthias, 2022. "Adaptive incentive-based demand response with distributed non-compliance assessment," Applied Energy, Elsevier, vol. 326(C).
    16. Mehrnaz Anvari & Elisavet Proedrou & Benjamin Schäfer & Christian Beck & Holger Kantz & Marc Timme, 2022. "Data-driven load profiles and the dynamics of residential electricity consumption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Khalili, Tohid & Jafari, Amirreza & Abapour, Mehdi & Mohammadi-Ivatloo, Behnam, 2019. "Optimal battery technology selection and incentive-based demand response program utilization for reliability improvement of an insular microgrid," Energy, Elsevier, vol. 169(C), pages 92-104.
    19. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    20. Yin, Chen & Mao, Shuhua, 2023. "Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting," Energy, Elsevier, vol. 269(C).
    21. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2018. "An improved incentive-based demand response program in day-ahead and intra-day electricity markets," Energy, Elsevier, vol. 155(C), pages 205-214.
    22. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    23. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    24. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
    25. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Su, Jinshuo & Zhao, Teyang, 2024. "Incentive-based integrated demand response with multi-energy time-varying carbon emission factors," Applied Energy, Elsevier, vol. 359(C).
    26. Zhang, Chao & Lasaulce, Samson & Wang, Li & Saludjian, Lucas & Poor, H. Vincent, 2022. "A refined consumer behavior model for energy systems: Application to the pricing and energy-efficiency problems," Applied Energy, Elsevier, vol. 308(C).
    27. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    28. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    29. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    30. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    31. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    32. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    33. Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
    34. Du, Yan & Zandi, Helia & Kotevska, Olivera & Kurte, Kuldeep & Munk, Jeffery & Amasyali, Kadir & Mckee, Evan & Li, Fangxing, 2021. "Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 281(C).
    35. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    36. Thapar, Sapan, 2020. "Energy consumption behavior: A data-based analysis of urban Indian households," Energy Policy, Elsevier, vol. 143(C).
    37. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).
    38. Clempner, Julio B. & Poznyak, Alexander S., 2015. "Computing the strong Nash equilibrium for Markov chains games," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 911-927.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    2. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    3. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
    5. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
    6. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    7. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Goh, Hui Hwang, 2023. "Incentive-based demand response under incomplete information based on the deep deterministic policy gradient," Applied Energy, Elsevier, vol. 351(C).
    8. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    9. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    10. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).
    11. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
    12. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    13. Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    14. Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).
    15. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    16. Gao, Jianwei & Ma, Zeyang & Guo, Fengjia, 2019. "The influence of demand response on wind-integrated power system considering participation of the demand side," Energy, Elsevier, vol. 178(C), pages 723-738.
    17. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    18. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    19. Zheng, Shunlin & Qi, Qi & Sun, Yi & Ai, Xin, 2023. "Integrated demand response considering substitute effect and time-varying response characteristics under incomplete information," Applied Energy, Elsevier, vol. 333(C).
    20. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.