IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7967-d1146052.html
   My bibliography  Save this article

A Novel Minimal-Cost Power Allocation Strategy for Fuel Cell Hybrid Buses Based on Deep Reinforcement Learning Algorithms

Author

Listed:
  • Kunang Li

    (National Engineering Research Center for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Chunchun Jia

    (National Engineering Research Center for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Xuefeng Han

    (China North Vehicle Research Institute, Beijing 100072, China)

  • Hongwen He

    (National Engineering Research Center for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Energy management strategy (EMS) is critical for improving the economy of hybrid powertrains and the durability of energy sources. In this paper, a novel EMS based on a twin delayed deep deterministic policy gradient algorithm (TD3) is proposed for a fuel cell hybrid electric bus (FCHEB) to optimize the driving cost of the vehicle. First, a TD3-based energy management strategy is established to embed the limits of battery aging and fuel cell power variation into the strategic framework to fully exploit the economic potential of FCHEB. Second, the TD3-based EMS is compared and analyzed with the deep deterministic policy gradient algorithm (DDPG)-based EMS using real-world collected driving conditions as training data. The results show that the TD3-based EMS has 54.69% higher training efficiency, 36.82% higher learning ability, and 2.45% lower overall vehicle operating cost compared to the DDPG-based EMS, validating the effectiveness of the proposed strategy.

Suggested Citation

  • Kunang Li & Chunchun Jia & Xuefeng Han & Hongwen He, 2023. "A Novel Minimal-Cost Power Allocation Strategy for Fuel Cell Hybrid Buses Based on Deep Reinforcement Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7967-:d:1146052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7967/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7967/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fengyan Yi & Dagang Lu & Xingmao Wang & Chaofeng Pan & Yuanxue Tao & Jiaming Zhou & Changli Zhao, 2022. "Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Based on Pontryagin’s Minimum Principle Considering Battery Degradation," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    2. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    3. Bao, Shuyue & Sun, Ping & Zhu, Jianxin & Ji, Qian & Liu, Junheng, 2022. "Improved multi-dimensional dynamic programming energy management strategy for a vehicle power-split hybrid powertrain," Energy, Elsevier, vol. 256(C).
    4. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    5. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    6. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    7. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    9. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    11. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yavuz Eray Altun & Osman Akın Kutlar, 2024. "Energy Management Systems’ Modeling and Optimization in Hybrid Electric Vehicles," Energies, MDPI, vol. 17(7), pages 1-39, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    2. Xu Wang & Ying Huang & Jian Wang, 2023. "Study on Driver-Oriented Energy Management Strategy for Hybrid Heavy-Duty Off-Road Vehicles under Aggressive Transient Operating Condition," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    3. Kun He & Dongchen Qin & Jiangyi Chen & Tingting Wang & Hongxia Wu & Peizhuo Wang, 2023. "Adaptive Equivalent Consumption Minimization Strategy for Fuel Cell Buses Based on Driving Style Recognition," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    4. Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
    5. Li, Xue & Li, Minghai & Habibi, Mostafa & Najaafi, Neda & Safarpour, Hamed, 2023. "Optimization of hybrid energy management system based on high-energy solid-state lithium batteries and reversible fuel cells," Energy, Elsevier, vol. 283(C).
    6. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    7. Zhiming Zhang & Sai Wu & Huimin Miao & Tong Zhang, 2022. "Numerical Investigation of Flow Channel Design and Tapered Slope Effects on PEM Fuel Cell Performance," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    8. Wang, Yichun & Zhang, Yuanzhi & Zhang, Caizhi & Zhou, Jiaming & Hu, Donghai & Yi, Fengyan & Fan, Zhixian & Zeng, Tao, 2023. "Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition," Energy, Elsevier, vol. 263(PF).
    9. Liu, Zhaoming & Chang, Guofeng & Yuan, Hao & Tang, Wei & Xie, Jiaping & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive look-ahead model predictive control strategy of vehicular PEMFC thermal management," Energy, Elsevier, vol. 285(C).
    10. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    11. Zhang, Yahui & Wei, Zeyi & Wang, Zhong & Tian, Yang & Wang, Jizhe & Tian, Zhikun & Xu, Fuguo & Jiao, Xiaohong & Li, Liang & Wen, Guilin, 2024. "Hierarchical eco-driving control strategy for connected automated fuel cell hybrid vehicles and scenario-/hardware-in-the loop validation," Energy, Elsevier, vol. 292(C).
    12. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Zhou, Yang & Chen, Bo & Xu, Xianfeng & Zhang, Zhen & Ravey, Alexandre & Péra, Marie-Cécile & Ma, Ruiqing, 2024. "Data-driven cost-optimal energy management of postal-delivery fuel cell electric vehicle with intelligent dual-loop battery state-of-charge planner," Energy, Elsevier, vol. 290(C).
    14. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Deng, Pengyi & Wu, Xiaohua & Zhang, Jiye, 2022. "Hierarchical energy management of a hybrid propulsion system considering speed profile optimization," Energy, Elsevier, vol. 244(PB).
    15. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    16. Jiaming Zhou & Jie Liu & Qingqing Su & Chunxiao Feng & Xingmao Wang & Donghai Hu & Fengyan Yi & Chunchun Jia & Zhixian Fan & Shangfeng Jiang, 2022. "Heat Dissipation Enhancement Structure Design of Two-Stage Electric Air Compressor for Fuel Cell Vehicles Considering Efficiency Improvement," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    17. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Zhiming Zhang & Sai Wu & Kunpeng Li & Jiaming Zhou & Caizhi Zhang & Guofeng Wang & Tong Zhang, 2022. "An Effective Force-Temperature-Humidity Coupled Modeling for PEMFC Performance Parameter Matching by Using CFD and FEA Co-Simulation," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    19. Zhiming Zhang & Alexander Rex & Jiaming Zhou & Xinfeng Zhang & Gangqiang Huang & Jinming Zhang & Tong Zhang, 2023. "Dynamic Simulation Model and Experimental Validation of One Passive Fuel Cell–Battery Hybrid Powertrain for an Electric Light Scooter," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    20. Zhang, Junjiang & Feng, Ganghui & Yan, Xianghai & He, Yundong & Liu, Mengnan & Xu, Liyou, 2024. "Cooperative control method considering efficiency and tracking performance for unmanned hybrid tractor based on rotary tillage prediction," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7967-:d:1146052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.